Главная - Идеи
Какие специалисты могут обслуживать автоматический противогололедный комплекс. Противогололедные системы



Владельцы патента RU 2287635:

Изобретение может быть использовано на крупных дорожных магистралях. Сущность предложенных технических решений состоит в сборе информации о состоянии окружающей среды на контролируемых участках и передачи этой информации на терминал управления. Терминал на основании анализа полученных данных определяет вероятность возникновения гололеда на контролируемом участке и выдает команду стационарным средствам обработки на упреждающее нанесение противогололедных реагентов. Стационарные средства выполнены с возможностью включения в любой последовательности. Технический результат - повышение качества обработки дорожного полотна и точность исполнительской функции системы. 2 н.п. ф-лы.

Изобретение относится к автоматизированным техническим средствам обеспечения противодействия гололедным явлениям и может быть использовано для борьбы с гололедом на крупных дорожных магистралях, таких как МКАД.

Из уровня техники известны способ и устройство противогололедной обработки по патенту США №4557420 от 10.12.1985, предложенные в качестве наиболее близких аналогов. Указанное устройство состоит из насосной станции, гидравлической системы дорожного участка и автоматической метеостанции. Насосная станция представляет собой контейнер, установленный в непосредственной близости от обрабатываемого дорожного участка, внутри которого находятся емкости для хранения реагента, насосная гидравлическая система и аппаратура управления. Оборудование дорожного участка состоит из разбрызгивающих головок, расположенных вдоль дорожного участка и объединенных гидравлической системой. Автоматическая метеостанция оборудована датчиками для измерения температуры воздуха, атмосферного давления, относительной влажности, количества осадков (типа «ведро») и скорости и направления ветра. Способ осуществления противогололедной обработки включает нормированное распределение жидкого реагента на поверхности дорожного участка посредством автоматического или дистанционого включения операции разбрызгивания, благодаря которой реагент равномерно наносят по всей протяженности дорожного участка.

К недостаткам известных способа и устройства можно отнести отсутствие системы стабилизации давления в гидросистеме и возможности адресного управления интервалами разбрызгивания головок, что в свою очередь не позволяет нанести реагент с заданной точностью на поверхность дороги - управление разбрызгиванием производится по единственной команде «начать разбрызгивание», после которой производится последовательное автоматическое включение разбрызгивающих головок на единый, заданный для всех головок интервал времени. Кроме того, в состав известного устройства входит такой дорогостоящий и требующий постоянного контроля и обслуживания элемент как гидроаккумуляторы, снижающие общую надежность системы, а для наполнения реагентом всей гидросистемы, включая гидроаккумуляторы, необходима длительная работа насоса, что удорожает стоимость эксплуатации устройства.

Задачей предлагаемой группы изобретений является рассчитанное и строго нормируемое нанесение реагента с учетом метеорологической обстановки и рельефа конкретного дорожного участка. Технический результат, который может быть получен при реализации группы изобретений, заключается в повышении качества обработки дорожного полотна и точности исполнительской функции системы посредством возможности точечного нанесения реагента на конкретный участок дорожного покрытия (с точностью до нескольких квадратных метров) в режиме реального времени.

Для достижения поставленного результата предлагается способ автоматической обработки дорожного покрытия противогололедным реагентом, при котором измеряют на контролируемом участке дороги параметры окружающей среды и/или состояние дорожного покрытия посредством установленных вдоль дороги метеорологических датчиков и/или датчиков состояния дорожного покрытия, направляют полученные данные на терминал управления, ведут обработку и анализ полученных параметров с последующим определением нарастания вероятности возникновения гололеда на контролируемом участке и в случае нарастания такой вероятности ведут расчет заданной плотности распределения реагента, направляя посредством терминала управления адресный сигнал на исполнительные механизмы разбрызгивающих головок, обеспечивающие их включение в любой последовательности для нанесения противогололедного реагента с заданной плотностью.

Для достижения поставленного результата предлагается система автоматической обработки дорожного покрытия противогололедным реагентом, включающая связанные между собой терминал управления, расположенные вдоль определенных участков дорог метеорологических датчиков и/или датчиков состояния дорожного покрытия разбрызгивающие головки, при этом разбразгивающие головки установлены на проложенных вдоль дороги гидромагистралях, упомянутые датчики выполнены с возможностью измерения на контролируемом участке дороги параметров окружающей среды и/или состояния дорожного покрытия и передачи полученных данных на терминал управления, выполненный с возможностью определения на основании обработки и анализа упомянутых данных нарастания вероятности возникновения гололедной обстановки на контролируемом участке и в случае определения нарастания такой вероятности расчета заданной плотности распределения реагента и направления адресного сигнала на исполнительные механизмы разбрызгивающих головок для нанесения реагента с заданной плотностью, а упомянутые головки выполнены с возможностью включения в любой последовательности.

Система обеспечения противогололедной обстановки (СОПО) согласно настоящей группе изобретений представляет собой стационарную систему, устанавливаемую в непосредственной близости к контролируемому дорожному участку. Одна СОПО может контролировать участок дороги протяженностью до 1,5 км или, при необходимости, более. В состав СОПО входят автоматическая метеорологическая станция (АМС), центральная насосная станция (ЦНС) и оборудование дорожного участка.

Основными составляющими ЦНС являются шкаф с аппаратурой управления СОПО, гидравлическое оборудование и насос высокого давления. Аппаратура управления обеспечивает удобный интерфейс, позволяющий управлять СОПО и предоставлять все необходимые данные пользователю в наглядном виде, управление гидравлическим оборудованием, стабилизацию рабочего давления в гидросистеме во время обработки участка дороги реагентом, управление оборудованием контролируемого дорожного участка, получение и обработку данных от АМС, расчет метеорологического прогноза образования гололеда, расчет необходимой плотности распределения реагента, автоматическое выполнение цикла обработки дорожного участка реагентом (включая подготовительные и завершающие операции), контроль за функционированием электронной части системы управления, гидравлического оборудования ЦНС и модулей управления клапанами дорожных участков, графическое отображение текущего состояния гидравлического оборудования ЦНС, обмен данными с центральным терминалом, прием и выполнение команд управления от центрального терминала и хранение данных за заданный период времени.

Оборудование дорожного участка включает блоки дорожных головок, установленных на проложенных вдоль дорожных участков гидромагистралях, а также кабели управления и питания.

Автоматические метеорологические станции за счет применения метеорологических датчиков обеспечивают высокоточное измерение параметров атмосферы, таких как температура воздуха, атмосферное давление, скорость и направление ветра, влажность, количество и тип осадков (с возможностью определения «дождь» или «снег»), приходящую энергию солнечного излучения. Контроль состояния дорожного покрытия обеспечивают дорожные датчики, измеряющие температуру дорожного покрытия на различных глубинах, а также на поверхности дороги, концентрацию реагента на дороге и его состояние - «вода» или «лед». Дорожные датчики могут быть подсоединены как к АМС, так и непосредственно к СОПО через интерфейс оборудования дорожного участка.

Обработку дорог реагентом производят при нарастании вероятности возникновения гололедных явлений. Такую вероятность определяют на основании метеорологических данных, выдаваемых АМС. Данные поступают в аппаратуру управления СОПО и на центральный терминал. Команду на обработку вырабатывает либо система управления СОПО, либо центральный терминал.

Для оптимального решения поставленной задачи обработку проводят посредством нанесения реагента перед возникновением гололедной обстановки или перед выпадением осадков, приводящих к гололеду.

Реагент наносят путем разбрызгивания его форсунками блока дорожных головок, расположенных по краю проезжей части. Каждый блок обслуживает участок дороги длиной 10-12 м и шириной в 2-3 полосы. Реагент наносят равномерно с заданной плотностью распределения на всю обслуживаемую площадь дорожного полотна. Стабильность работы головок обеспечивают за счет увеличения производительности насоса и включения в гидравлическую схему регулятора давления, что устраняет колебания давления в процессе последовательного разбрызгивания реагента и позволяет поддерживать заданные расходные характеристики разбрызгивающих головок. Кроме того, используемая аппаратура управления ЦНС позволяет формировать последовательный пакет сигналов, включающих адрес головки, команды «включить - выключить» и служебные биты и, как следствие, управлять разбрызгивающими головками в любой последовательности, в частности управлять произвольными группами головок, вплоть до одной конкретной головки, задавая для них интервал разбрызгивания и количество наносимого реагента, что в свою очередь позволяет вести контроль и обработку конкретного дорожного участка в данном месте в реальном времени.

1. Способ автоматической обработки дорожного покрытия противогололедным реагентом, при котором измеряют на контролируемом участке дороги параметры окружающей среды и/или состояние дорожного покрытия посредством установленных вдоль дороги метеорологических датчиков и/или датчиков состояния дорожного покрытия, направляют полученные данные на терминал управления, ведут обработку и анализ полученных параметров с последующим определением нарастания вероятности возникновения гололеда на контролируемом участке и, в случае нарастания такой вероятности, ведут расчет заданной плотности распределения реагента, направляя посредством терминала управления адресный сигнал на исполнительные механизмы разбрызгивающих головок, обеспечивающие их включение в любой последовательности для нанесения противогололедного реагента с заданной плотностью.

2. Система автоматической обработки дорожного покрытия противогололедным реагентом, включающая связанные между собой терминал управления, расположенные вдоль определенных участков дороги метеорологических датчиков и/или датчиков состояния дорожного покрытия и разбрызгивающие головки, при этом разбрызгивающие головки установлены на проложенных вдоль дороги гидромагистралях, упомянутые датчики выполнены с возможностью измерения на контролируемом участке дороги параметров окружающей среды и/или состояния дорожного покрытия и передачи полученных данных на терминал управления, выполненный с возможностью определения на основании обработки и анализа упомянутых данных нарастания вероятности возникновения гололедной обстановки на контролируемом участке и, в случае определения нарастания такой вероятности, расчета заданной плотности распределения реагента и направления адресного сигнала на исполнительные механизмы разбрызгивающих головок для нанесения реагента с заданной плотностью, а упомянутые головки выполнены с возможностью включения в любой последовательности.

Разумов Ю.В. доцент кафедры "Дорожно-Строительных Машин"

1. Распределители противогололедных средств.

Машины для борьбы с гололедом бывают с механическим, физико-термическим и химическим способом воздействия на гололед. При содержании дорожных покрытий применяют в основном распределители противогололедных материалов с химическим воздействием на гололед, т. е. распределители по поверхности покрытия песка, хлоридов, реагентов и др. Специальное оборудование этих машин состоит из кузова для технологических материалов, скребкового конвейера, распределительного устройства, привода и гидросистемы. Распределители часто оснащают дополнительным оборудованием: щеточным устройством и снежным плугом, конструкция которых аналогична оборудованию подметально-уборочных машин.

Рабочее оборудование распределителя монтируют на базе грузовых автомобилей (рис.2.9.). На автомобиль устанавливают специальный кузов-бункер сварной конструкции объемом 2,2÷3,0 м3. Боковые, передняя и иногда задняя стенки кузова расположены под углом для лучшего перемещения песка вниз к конвейеру и далее к распределительному устройству. В днище кузова расположен скребковый конвейер, ведомый вал и механизм натяжения которого смонтированы в передней части кузова. Скребковый конвейер служит для подачи материала к распределительному устройству, установленному в задней части кузова. Задний борт машины имеет отверстие для выхода скребкового конвейера, с которого материал поступает в направляющую воронку. Из воронки противогололедный материал поступает в распределительное устройство, как правило, дискового типа. Диск вращается с частотой 1,7÷8 об/мин, и под действием центробежных сил материал веером рассеивается по покрытию. Ширина полосы распределения материала составляет 4÷8 м. Привод рабочего оборудования машины бывает механический или гидравлический. В механическом приводе крутящий момент передается от основного автомобильного двигателя через коробку отбора мощности, карданные передачи, цепные и зубчатые редукторы к ведущему валу скребкового конвейера, распределительного диска и щеточного устройства.

В машинах с гидравлическим приводом крутящий момент от двигателя автомобиля передается на гидросистему, приводящую в движение скребковый конвейер и диск. Гидропривод обеспечивает возможность плавного бесступенчатого изменения скорости скребкового конвейера и частоты вращения распределительного диска, что позволяет устанавливать необходимую плотность распределения материалов (30÷500 г/м3) и ширину обработки покрытия без изменения скорости движения автомобиля. В последнее время для борьбы с гололедом все более широкое применение находят жидкие реагенты. Для распределения жидких противогололедных материалов могут быть использованы поливочно-моечные машины или специальные распределители. Производительность пескоразбрасывателей определяют так же, как и самоходных машин непрерывного действия, с учетом потерь на загрузку кузова противогололедным материалом, переезд машины в загруженном и разгруженном состоянии и другие вспомогательные операции. Средняя производительность машин для распределения противогололедных материалов составляет 20÷90 тыс. м/ч. Применение пескоразбрасывателей на аэродромах крайне нежелательно. Особенно это противопоказано на аэродромах, где эксплуатируют самолеты с турбореактивными двигателями. Применение таких машин в аэропортах следует ограничить подъездными дорогами. Для удаления гололедной пленки и снежно-ледяного наката, образующихся на поверхности покрытий, применяют тепловые машины. Принцип работы тепловых машин заключается в воздействии на обледенелое покрытие с помощью высокотемпературного скоростного потока продуктов сгорания топливовоздушной смеси, поступающей из турбореактивного двигателя, установленного на специальной раме автомобиля. Для повышения эффективности процесса удаления льда с покрытия на ряде тепловых машин устанавливают дополнительно источники инфракрасного излучения. Лед прозрачен для инфракрасных лучей. Поэтому инфракрасное излучение, генерируемое излучателем, свободно проходит через слой льда к граничной поверхности покрытия, которая, будучи непрозрачной, поглощает лучи и нагревается. Тепло от поверхности покрытия в свою очередь передается к пограничному слою льда, что приводит к подплавлению последнего и к полному ослаблению сил, связывающих лед с покрытием. Газовоздушная струя вследствие аэродинамического напора взламывает подтаявший лед и уносит его за пределы покрытия. Производительность тепловых машин рассчитывают аналогично производительности снегоочистителей.

ООО Стройпроект" производит работы по проектированию, поставке оборудования, строительству и пусконаладке Автоматических Противогололедных Систем (АПС).

Автоматическая противогололедная система (АПС)

Противогололедная установка предназначена для нанесения жидкого реагента на дорожное полотно с целью предотвращения на нем гололедных явлений как по обработанной информации собственных метео- и дорожных датчиков (автоматический режим), так и по командам с диспетчерского терминала (полуавтоматический режим).

Передача информации между установкой и диспетчерским терминалом осуществляется по GSM сети.

Основной режим работы установки автоматический. В этом режиме она по показаниям входящей в ее состав автоматической дорожной метеостанции способна прогнозировать наступление гололедных явлений и самостоятельно проводить обработку дорожного полотна жидким противогололедным реагентом. Возможна работа установки в полуавтоматическом режиме, при котором установка проводит дорожного полотна по командам диспетчера с удаленного терминала.

Технические характеристики системы:

Назначение системы АПС предназначена для нанесения жидкого реагента на дорожное полотно с целью предотвращения гололедных явлений
Длина обрабатываемого дорожного участка одной гидромагистралью До 5000 метров
Количество гидромагистралей До 6 (в зависимости от конфигурации дорожного участка)
Ширина обрабатываемого дорожного участка до 11 метров
Расположение разбрызгивающих устройств(РУ) В зависимости от конструктивных особенностей дорожного участка (За волновым ограждением дорожного полотна; За декоративным обрамлением тунеля; За дорожным ограждением типа "Нью-Джерси")
Расстояние между РУ 8 - 15 метров
Время обработки дорожного участка одной гидромагистоалью До 10 минут
Время, на которое делается метеопрогноз гололедных явлений на контролируемом дорожном участке На 30 минут
Режим работы системы Автоматический, полуавтоматический при участии диспетчера
Канал связи с диспетчерским терминалом GSM
Тип здания для центральной насосной станции Контейнер (7x2,5x2,5м или 9х2,5х2,5м)
Объем емкостей для хранения реагента 7,2 до 12,6 м 3 .

Состав АПС:

  • автоматическая дорожная метеостанция (АДМС);
  • насосная станция (НС);
  • оборудование дорожного участка.

Автоматическая дорожная метеостанция (АДМС)

Автоматическая дорожная метеостанция включает в себя мачту и размещаемую на ней аппаратуру. Мачта АДМС располагается на крыше НС.

В состав аппаратуры АДМС входят:

  • датчик температуры воздуха;
  • датчик давления;
  • датчик скорости и направления ветра;
  • датчик вида и количества осадков;
  • дорожный датчик (бесконтактный, располагается над дорожным полотном).

Насосная станция представляет собой контейнер (габариты 7.0 * 2.5 * 2.5 или 9.0 * 2.5 * 2.5 метров) с размещенным внутри гидро и электро оборудованием. Изготовление корпуса насосной станции, монтаж оборудования, его испытания и тестирование проводятся в заводских условиях. Для установки на дорожный участок поставляется готовая и проверенная насосная станция.

  • комплект датчиковой аппаратуры.
  • В состав электрооборудования насосной станции входят

    • оборудование системы электроснабжения, которое обеспечивает прием электроэнергии от внешнего источника электроснабжения, ее учет и разводку по внутренним потребителям АПС;
    • оборудование системы управления (СУ);
    • оборудование системы связи с диспетчерским терминалом.

    Оборудование дорожного участка:

    В состав оборудования дорожного участка входят дорожные головки (ДГ) с размещенными внутри разбрызгивающим устройством (РУ), электроклапаном и контрольно-управляющим устройством (КУМ), а также магистральные трубопроводы для подачи жидкого реагента от НС до ДГ и электрокабели для управления работой оборудования ДГ.

    С того момента, когда в 2006 году в Москве на развязках Ярославское шоссе - МКАД и Алтуфьевское шоссе - МКАД была установлена система обеспечения противогололедной обстановки (СОПО) отечественной разработки, количество зимних дорожно-транспортных происшествий на этих участках уменьшилось в несколько раз. Это лишний раз подтверждает, что использование СОПО является сегодня наиболее эффективным методом в борьбе с гололедом на автотрассах и дорожных развязках.

    В зарубежных странах со схожим с Россией климатом известные производители уже давно поставляют дорожникам комплекты оборудования, позволяющие осуществлять обработку дорожного полотна на сложных участках автотрасс и искусственных инженерных сооружениях жидкими противогололедными реагентами, используя данные автоматических замеров параметров погоды или команды из диспетчерского пункта. А шесть лет назад - в 2002 году - и у нас московским правительством было принято решение о разработке отечественной системы обеспечения противогололедной обстановки. Выполнение его было поручено ОАО "Московские дороги".

    Что же представляют собой противогололедные системы, созданные отечественными специалистами?

    Первыми, кто извещает систему о состоянии дороги и окружающей среды, являются автоматические дорожные метеостанции (АДМС) и дорожные датчики - своего рода дозорные, которые постоянно контролируют целый ряд погодных параметров - температуру воздуха и дорожного полотна, силу и направление ветра, толщину снежного покрова и многое другое.

    Данные измерений поступают в систему управления центральной насосной станции (ЦНС) - основного элемента СОПО, где производится расчет и делается прогноз возможности возникновения гололеда на один-два часа вперед. Если вероятность образования гололеда высока, то включается гидросистема ЦНС и через разбрызгивающие головки производится обработка дорожного полотна. При этом плотность нанесения реагента зависит от того, сколь сильным прогнозируется образование гололеда.

    Оборудование того или иного дорожного участка может состоять из одной или даже нескольких (на сложных дорожных развязках) центральных насосных станций. Они оснащены контейнерами для хранения жидких противогололедных реагентов, внутренней гидравлической системой с насосом и рядом управляемых электроникой клапанов и задвижек, которые обеспечивают устойчивую работу системы со стабильным давлением. Кроме того, на ЦНС размещены системы управления, связи и электропитания.

    Все это размещено в удобном и компактном транспортабельном модуле, который собирается и тестируется на заводе. К месту установки он поступает уже практически в готовом к работе состоянии. От насосной станции вдоль дороги прокладывается недорогой пластиковый трубопровод - гидромагистраль, а также четыре электропровода: два - для питания и два для управления. Через каждые 10-15 метров ставятся блоки, которые содержат контрольно-управляющий модем, электромагнитный клапан и разбрызгивающую головку.

    Рассказывает генеральный директор ОАО "Московские дороги", доктор технических наук Александр НЕФЕДОВ:

    Наша система позволяет реально контролировать ситуацию, понимать, где и что происходит на дорогах, и потому подсказывает, куда нужно направлять дорожную уборочную технику - ведь автоматическими противогололедными системами оборудуются только самые ответственные участки автомагистралей, преимущественно транспортные развязки, на остальных участках для противогололедной обработки используется подвижная техника.

    При этом наша контрольно-измерительная аппаратура позволяет проверить, была ли проведена уборка снега на автотрассе и если да, то когда именно, поскольку она оснащена ультразвуковым датчиком, определяющим толщину снежного покрова с точностью до нескольких миллиметров. Кроме того, есть и датчики, установленные непосредственно в дорожном полотне. Они измеряют температуру на поверхности дороги, на глубинах 5 см и 30 см в самом дорожном покрытии. Это необходимо для точного прогноза образования гололеда на дороге.

    Еще одной важнейшей частью СОПО является центральный диспетчерский пункт (ЦДП), куда стекается информация о техническом состоянии оборудования, установленного на дорожных участках, метеорологические данные со всего региона, где размещены автоматические дорожные метеостанции. Здесь же производится их обработка и архивирование.

    Кроме того, оператор ЦДП может управлять работой системы, что необходимо при проведении технологических работ или при возникновении нештатных ситуаций. Специализированное программно-математическое обеспечение и аппаратный комплекс ЦДП позволяют управлять СОПО по различным каналам связи и независимо от их расположения. Например, из московского технического центра возможно контролировать работу и управлять СОПО, размещенными в других городах. Из диспетчерского пункта можно также контролировать работу и управлять подвижной техникой, выполняющей нанесение антигололедных реагентов.

    Главная задача, которую мы ставим перед собой, - создать систему, способную собирать, обрабатывать, фильтровать данные и выдавать их потребителям из единого центра. Систему, которая все объединяет в единый комплекс, так как это позволяет, с одной стороны, закрывать противогололедными установками СОПО наиболее сложные участки дорог, а, с другой, получая информацию из разных точек региона, более четко управлять подвижной техникой.

    С целью дальнейшего снижения стоимости оборудования и создания предпосылок для упрощения и удешевления процесса эксплуатации мы предложили перенести все наиболее сложные задачи по прогнозу и управлению СОПО в единый инженерный диспетчерский пункт, сохранив на дорожных участках оборудование с минимальными функциями управления и контроля. Создание единого центра дает возможность регионально организовывать управление работой подвижной уборочной техникой, основываясь на объективных данных о погоде.

    Это предложение вынесено на рассмотрение в комплекс городского хозяйства Москвы. В качестве пилотного проекта предлагается создание единого комплекса на третьем транспортном кольце и в Зеленограде с последующим включением в него других районов Москвы и уже действующих СОПО.

    Задача непростая, но специалисты ОАО "Московские дороги" ее планомерно решают. И сегодня уже можно говорить о создании отечественной противогололедной системы, превосходящей по характеристикам зарубежные образцы и имеющей существенно меньшую стоимость.

    Ряд примененных при создании СОПО технических решений защищены патентами. Все оборудование сертифицировано, автоматическая дорожная метеостанция, входящая в состав СОПО, внесена в единый Государственный реестр средств измерений. А одна из ведущих проектных организаций - ГУП "Мосинжпроект" - организовала разработку методических рекомендаций по проектированию объектов с учетом СОПО, с перспективой создания на базе этого документа стандарта предприятия и отраслевого стандарта.

    Важно отметить, что СОПО благодаря развитой структуре связи и наличию соответствующего программного обеспечения позволяют легко дооснащать систему новыми контрольными функциями - например, видеокамерами, дополнительными датчиками контроля транспортных потоков и т.д.

    Рассказывает Александр НЕФЕДОВ:

    По ряду параметров и технических решений наша система превосходит зарубежные аналоги. Например, разбрызгивающая головка, разработанная нами в содружестве со специалистами МГТУ им. Баумана, обеспечивает дальность вылета струи реагента примерно на 40% дальше, чем зарубежные аналоги. Это дает нам возможность обеспечить гарантированное перекрытие двух, а в ряде случае и трех полос дороги и не ставить при этом разбрызгивающие линии и головки в полотно дороги.

    Для стабилизации давления в гидросистеме зарубежных аналогов устанавливают вдоль дорожного полотна ресиверы (по одному на каждые 4 - 8 головок). Мы решили эту задачу путем регулирования производительности насоса в процессе обработки дорожного полотна. Это существенно упрощает монтаж и последующее обслуживание.

    Все перечисленное позволяет нам рассчитывать на то, что со временем выйдем на зарубежный рынок, потому что в европейских странах такие системы, как наша, очень востребованы. Однако пользу от решения этой задачи в первую очередь почувствуют отечественные потребители - ведь нашу продукцию мы предлагаем прежде всего россиянам...

    А пока специалисты ОАО "Московские дороги" успешно осваивают российские просторы. Совсем недавно компания выиграла несколько конкурсов на разработку проекта по применению своих систем на сложных участках Московской кольцевой автодороги и развязках и два конкурса - на поставку оборудования по выполненным ранее проектам.

    Интерес к СОПО отечественной разработки проявляют и регионы. Так, по инициативе Дорожного комитета Перми такой системой оснащен новый Красавинский мост через р. Каму. А это вместе с подъездными участками около 2 км длины полотна - по три полосы в каждом направлении.

    Изыскало финансовые ресурсы для оснащения противогололедной системой двух развязок на трассе Казань - Оренбург и Министерство транспорта Республики Татарстан.

    Принимая во внимание преимущества и не в последнюю очередь стоимость отечественной разработки, а также наличие специалистов, способных решать комплексные задачи на всех этапах создания системы, проектные организации ГУП "Мосинжпроект", "Промос" (Москва), "Транспроект" (Казань) и ряд других включают СОПО в состав разрабатываемых ими проектов. Специалисты ОАО "Московские дороги" выполнили или приняли участие в выполнении более 20 проектов на оснащение мостов и развязок как действующих, так и вновь проектируемых.

    К слову, весьма эффективное применение эти разработки компании "Московские дороги" могли бы найти при сооружении автомобильных дорог в олимпийском Сочи. На олимпийских автотрассах будет целый ряд сложных горных участков, на которых, по данным метеорологов, возможно образование гололеда до 80 раз в сезон - то есть фактически каждые два-три дня. Поэтому там особенно остро стоит вопрос о четком метеорологическом обеспечении дорожных служб, а также об оснащении особо сложных участков стационарными противогололедными системами.

    И предпочтение лучше отдать именно отечественным разработкам, памятуя не только об их более конкурентной цене, по сравнению с зарубежными, но и о более низких эксплуатационных расходах, потому что использовать СОПО предстоит не только в дни Зимней Олимпиады, но и многие годы и даже десятилетия после нее.

     


    Читайте:



    Срок ремонта по гарантии

    Срок ремонта по гарантии

    Поломка нового телефона - случай неприятный, но с данной техникой не редкий. Возникает актуальный вопрос, что делать в такой ситуации. Особенно...

    Статистический контроль процессов

    Статистический контроль процессов

    Статистический контроль качества (понятие из японского стандарта) – это применение статистических принципов, методов и приемов на всех стадиях...

    Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

    Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

    Там на неведомых дорожках. Если вы не так уж боитесь Кащея,Или Бармалея и Бабу-Ягу,Приходите в гости к нам поскорее,Там, где зеленый дуб на...

    Менеджер по персоналу: должностная инструкция, требования и обязанности

    Менеджер по персоналу: должностная инструкция, требования и обязанности

    Предлагаем Вашему вниманию типовой пример должностной инструкции менеджера по персоналу, образец 2019/2020 года. На данную должность может быть...

    feed-image RSS