Главная - Производство
Скачать схему электрическую принципиальную электроснабжения литейного цеха. Проектирование энергоснабжения цехов предприятий

При проектировании сети электроснабжения крупных потребителей, в число которых входят также и отдельные цеха предприятий, важно учитывать достаточно много условий. Исходные данные для проектирования зависят от многих факторов, начиная от специализации предприятия и заканчивая географическим положением, поскольку нужно учитывать не только мощность, потребляемую оборудованием, но и расходы на освещение и теплоснабжение. Грамотно и рационально выполненный проект электроснабжения цеха существенно влияет на надежность работы установленного оборудования при минимально допустимом потреблении электроэнергии. Электроснабжение предприятия должно обеспечивать безопасные условия труда и не иметь вредного влияния на окружающую среду.

Наиболее сложный и трудоемкий этап проектирования внутреннего электроснабжения - это определение и расчет потребляемой мощности нагрузки. В основе расчета лежат данные, как по паспортной потребляемой мощности оборудования, так и режимы его работы. Учитываются все факторы, включая реактивную мощность, требующую компенсации при помощи специального оборудования – компенсаторов реактивной мощности для обеспечения равномерной нагрузки трехфазной сети.

Отдельной графой в определении мощности идет расчет системы освещения цеха, позволяющий выбрать и оптимизировать расположение и типы светильников, в зависимости от требований к освещенности различных участков. Наличие или отсутствие центрального отопления может потребовать введение в число потребителей сезонное подключение систем электроотопления.

Большинство цехов промышленного предприятия требуют проектирования систем вентиляции.

Указанные условия показывают, насколько может быть трудоемким расчет системы электроснабжения на первом этапе проектирования, особенно, если речь идет об электропитании цеха нестандартного оборудования.

На втором этапе проектирования, используя данные первого этапа и масштабный план размещения оборудования, выбирается тип распределительной сети. При этом, необходимо учитывать такие факторы:

  • Расположение приемников электроэнергии на территории цеха;
  • Степень ответственности приемников (требования к надежности электропитания);
  • Режим работы.

От выбранной схемы распределительной сети зависит расход материалов линий электропередач, расположение трансформаторных подстанций, распределительных щитов.


Используются такие виды распределительных сетей:

  • Радиальные схемы;
  • Магистральные;
  • Комбинированные.

При радиальной схеме каждый приемник питается от отдельной линии, проложенной от распределительного щита. Такой вид сетей используется для подключения мощных приемников, расположенных на достаточном удалении один от другого, а подстанция находится вблизи геометрического центра нагрузки.

Магистральная схема характеризуется тем, что применяется при сосредоточенной нагрузке, когда приемники энергии сгруппированы последовательно и на небольшом расстоянии друг от друга. В таком случае они подключаются к единой магистрали, проложенной от трансформаторной подстанции или распределительного щита.

К комбинированной относится магистральная схема с сосредоточенными нагрузками, когда от распределительно щита отходит несколько магистралей, каждая для своей группы нагрузок. Комбинированной сетью можно назвать и такое построение радиальной, когда мощные потребители получают питание непосредственно от питающей подстанции, а менее мощные объединены в группы и получают питание от распределительных щитов.

Именно комбинированные сети получили наибольшее распространение, так как они позволяют наиболее оптимально использовать материальные ресурсы без снижения надежности. На данном этапе также учитываются требования приемников к надежности питания и закладываются схемы резервирования подачи электроэнергии.


Схемы распределения сетей: а) радиальная; б, в) магистральная.

Третий этап разработки проекта основывается на двух предыдущих и предполагает расчет необходимого количества, мощности распределительных устройств, подстанций, компенсаторов реактивной мощности.

Расчет мощности приемников электрической энергии

Мощность нагрузки на питающую сеть во многом зависит от вида производства. К примеру, оборудование цеха металлорежущих станков комбината металлообработки при одинаковом количестве устройств, потребляет гораздо большую мощность, чем станки цеха обработки древесины. Таким образом, электроснабжение механического цеха тяжелого машиностроения требует более строгого подхода в отношении выбора количества и мощности преобразовательных подстанций и линий электропередач.

При проектировании следует учитывать суточный график работы потребителей, и в основе расчетов должна лежать средняя потребляемая мощность в часы максимальной нагрузки. Если в расчет брать суммарную мощность потребителей, то большую часть времени трансформаторы подстанции будут работать в недогруженном режиме, что приведет к лишним финансовым затратам на обслуживание питающего оборудования.

Считается, что оптимальный режим работы трансформатора должен составлять работу на 65 – 70% от номинальной мощности.

Требуемое сечение линий электропитания также выбирается с учетом средней потребляемой мощности, поскольку приходится учитывать допустимую плотность тока, нагрев и потери мощности.

Точно также на данном этапе должны учитываться характеристики потребления реактивной составляющей мощности, для рационального использования компенсаторов. Неправильное размещение и параметры компенсаторов приведут к перерасходу энергии, неправильному учету, а, главное, к увеличенным потерям и нагрузке на линии электропередач.

Данная задача ставится в первую очередь там, где в наличии имеется много мощных потребителей с индуктивной нагрузкой. Самым распространенным примером являются асинхронные двигатели, которые входят в большинство станочного оборудования.

Второй этап проектирования

Выбор типа распределительной сети частично определяется характеристикой оборудования по категорийности приемников. Различают три категории по требованиям к надежности электропитания:

  1. Первая категория – перерыв в подаче питания приводит к угрозе безопасности, авариям, полному срыву технологического процесса. К данной категории относятся большое количество оборудования машиностроительного и металлообрабатывающего профиля, а также предприятия серийного производства на основе конвейера, например, машиностроительного профиля.
  2. Вторая категория – нарушение производственного цикла, перебои в выпуске продукции, не приводящие к серьезным экономическим последствиям. Большинство производств относятся именно к этой категории. Здесь можно указать оборудование ремонтно - механического цеха (РМЦ).
  3. К третьей категории относятся потребители с более щадящими требованиями к электропитанию, чем первых двух категорий. Сюда можно отнести большинство производственного оборудования швейного цеха, и некоторые цеха металлоизделий.

Оборудование, относящееся к первой категории, требует выполнять проектирование электроснабжения с учетом взаимного резервирования нескольких (обычно двух) источников внешнего электрического снабжения.

Оптимальное сочетание надежности электроснабжения при минимальных затратах достигается правильным выбором системы электроснабжения в соответствии с категорийностью оборудования и расположением оборудования на площади производственного цеха.

В большинстве случаев наиболее рациональной является комбинированная магистральная схема с сосредоточенными нагрузками. Оборудование кузнечного цеха или сварочного цеха имеет свои особенности по энергопотреблению и требует прокладки отдельных питающих магистралей, а электроснабжение участка механосборочного цеха, напротив, вполне возможно выполнить по магистральной схеме. И когда в цехе установлено несколько поточных линий, то без нескольких магистралей питания не обойтись. То же необходимо учитывать, когда выполняется расчет электроснабжения инструментального цеха.


Отдельные линии питания закладываются на систему освещения и вентиляции, будь то электропроект деревообрабатывающего комбината или проект электрики авиазавода авиационного предприятия.

Заключительный этап

На основании данных предыдущих расчетов составляется электротехнический проект, состоящий из нескольких комплектов документов. Вначале разрабатывается рабочий проект, который в процессе выполнения работ может корректироваться в зависимости от местных условий и в конце работ будет отличаться от расчетного. Одним из основных документов при проектировании электроснабжения является однолинейная схема электроснабжения цеха. Чертеж однолинейной схемы позволяет быстро сориентироваться в тонкостях и особенностях электроснабжения цеха.

Подведем итоги

Проектирование системы электроснабжения отдельного цеха или целого завода является одним из самых ответственных мероприятий, выполнение которых возможно только специализированными организациями, имеющими право на такие работы. Не имеет смысла терять время на разработку проекта самостоятельно. Как бы он не был выполнен грамотно и точно, он все равно не получит согласования в организациях энергосбыта. Заказав типовой проект схемы внутрицехового электроснабжения до 1000 в или более у лицензированной организации, можно не беспокоится о безопасности и законности всех мероприятий по строительству и работе электрооборудования. Готовый проект будет иметь все необходимые допуски и согласования, начиная от эскиза и заканчивая полностью скорректированной документацией при сдаче объекта в эксплуатацию.

Заказать проект можно в компании «Мега.ру». На сайте компании имеется множество статей, раскрывающих суть и тонкости проектирования, с примерами проектов. Особое внимание следует обратить на статью , где подробным образом разъясняется, какие существуют стадии выполнения проекта электрики.

Но все же, гораздо больше интересующей информации можно получить, обратившись за консультацией непосредственно в компанию. В разделе указано, как можно связаться с нашими специалистами и получить ответы на все вопросы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Общая часть

1.2 Структура предприятия

1.3 Характеристика цеха

2. Расчетная часть

2.1 Расчет освещения

2.3 Расчет токов короткого замыкания

2.4 Выбор аппаратуры

2.5 Расчет ЛЭП

2.6 Расчет и выбор кабеля

2.7 Расчет заземления

2.8 Эксплуатация и ремонт электрооборудования

2.9 Монтаж оборудования

2.10 Монтаж заземляющих шин внутреннего заземляющего контура

3. Специальная часть

3.1 Описание электрооборудования цеха и подстанций

3.2 Схема станций и подстанций, их описание

3.3 Электроэрозионная установка, защита электрооборудования от коррозий

4. Охрана труда

4.1 Мероприятия по безопасности эксплуатации оборудования

4.2 Мероприятия по ТБ при работе электрооборудования

4.3 Противопожарные мероприятия

5 Экономическая часть

5.1. Определение капитальных затрат

5.2 Расчет штата

5.3 Расчёт затрат на заработную плату, начисления на заработную плату

5.4 Расчет затрат на амортизацию

5.5 Расчёт затрат на электроэнергию

5.6 Расчёт затрат на материалы

5.7 Расчет затрат на ремонт, пусконаладочных расходов, накладных расходов, налогов

5.8 Определение калькуляции затрат по участку (цеху и т.д.)

Заключение

Список литературы

ВВЕДЕНИЕ

В данном дипломном проекте будет рассмотрено электроснабжение и электрооборудование цеха механической сборки деталей среднего машиностроительного завода.

Электроэнергия служит человеку уже много десятилетий, и с течением времени потребность в ней непрерывно возрастает, что объясняется её преимуществами перед другими видами энергии: легко преобразуется в механическую, тепловую и световую энергии; сравнительно просто передаётся на значительные расстояния; скорость распространения электроэнергии приблизительно равна скорости света, и, наконец, производство и потребление электроэнергии совпадают по времени.

В области электроснабжения потребителей задачи развития промышленности, путем повышения эффективности производства на базе ускорения научно-технического прогресса, предусматривают повышение уровня проектно-конструкторских разработок, внедрение и рациональную эксплуатацию высоконадежного электрооборудования, снижение непроизводственных расходов электроэнергии при передаче, распределении и потреблении.

Развитие и усложнение структуры систем электроснабжения, возрастающие требования к экономичности и надежности их работы в сочетании с изменяющейся структурой и характером потребителей электроэнергии, широкое внедрение устройств управления распределением и потреблением электроэнергии на базе современной вычислительной техники ставят проблему подготовки высококвалифицированных инженеров.

Важнейшим этапом в развитии творческой деятельности будущих специалистов является курсовое и дипломное проектирование, в ходе которого развиваются навыки самостоятельного решения инженерных задач и практического применения теоретических знаний.

Оптимизация производственных процессов в сочетании с оптимизацией систем промышленного электроснабжения может и должна дать стране дополнительные средства за счёт сокращения непроизводительных расходов

Система электроснабжения - это совокупность элементов предназначенных для преобразования, производства, распределения и потребления электрической энергии. Электрическую энергию производят электрические станция: ТЭС (тепловая электростанция), ТЭЦ (тепло-электроцентраль), ГЭС (гидро-электростанция), ГРЭС (гидро-распределительная электростанция), АЭС (атомная электростанция), ВЭС (ветряная электростанция). Помимо перечисленных станций также существуют не традиционные методы получения электрической энергии например: под действием солнца, энергии морских приливов и отливов, энергия получаемая в результате перегнивания пищевых отходов и растений окружающей среды(органические вещества) . Электроснабжение промышленных предприятий напрямую зависит от комплексного решения инженерных задач. Для обеспечения критичного оборудования «чистым» гарантированным электропитанием необходимо использовать источник бесперебойного питания, который обеспечит «неразрывность» синусоиды напряжения в случае аварии в сети общего пользования и защиту оборудования от всех видов электрических помех. Используя источники бесперебойного питания можно обеспечить надежное электроснабжение предприятий любой отрасли деятельности. Надежное электроснабжение -- важный фактор, определяющий успешное функционирование любого производства.

Для обеспечения бесперебойного питания нужно также учитывать резервное электроснабжение. Резервное электроснабжение позволяет полностью исключить риски, связанные с непредвиденным отключением напряжения в центральных электросетях.

Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности общественного труда, улучшить качество продукции и облегчить условия труда. На базе использования электроэнергии ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управлении им. Поэтому в современной технологии и оборудовании промышленных предприятий велика роль электрооборудования, т.е. совокупности электрических машин, аппаратов, приборов и устройств, посредством которых производится преобразование электрической энергии в другие виды энергии и обеспечивается автоматизация технологических процессов.

Электромашиностроение - одна из ведущих отраслей машиностроительной промышленности. Процесс изготовления электрической машины складывается из операций, в которых используется разнообразное технологическое оборудование. При этом основная часть современных электрических машин изготовляется методами поточно-массового производства. Специфика электромашиностроения заключается главным образом в наличии таких процессов, как изготовление и укладка обмоток электрических машин, для чего применяется не стандартизированное оборудование, изготовляемое обычно самими электромашиностроительными заводами.

Электромашиностроение характерно многообразием процессов, использующих электроэнергию: литейное производство, сварка, обработка металлов и материалов давлением и резанием, термообработка и т.д. Предприятия электромашиностроения широко оснащены электрифицированными подъемно-транспортными механизмами, насосными, компрессорными и вентиляторными установками.

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000 В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150 кВ переменного тока и 1500 кВ постоянного тока.

В современных многопролетных цехах автомобильной промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Автоматизация затрагивает не только отдельные агрегаты и вспомогательные механизмы, но во все большей степени целые комплексы их, образующие полностью автоматизированные поточные линии и цехи.

Первостепенное значение для автоматизации производства имеют многодвигательный электропривод и средства электрического управления. Развитие электропривода идет по пути упрощения механических передач и приближения электродвигателей к рабочим органам машин и механизмов, а так же возрастающего применения электрического регулирования скорости приводов.

Целью настоящего дипломного проекта является проектирование электроснабжения механического цеха механической сборки деталей №9. Основной задачей настоящего проекта является проектирование надежного бесперебойного электроснабжения приемников цеха с минимальными капитальными затратами и эксплуатационными издержками и обеспечение высокой безопасности.

Системы электроснабжения промышленных предприятий создаются для обеспечения электроэнергией промышленных приемников, к которым относятся электродвигатели различных машин и механизмов, электрические печи, электролизные установки, аппараты и машины для электрической сварки, осветительные установки и др.

Система распределения и потребления электроэнергии, получаемой от энергосистем, строится таким образом, чтобы удовлетворялись основные требования электроприемников, находящихся у потребителей.

Надежность электроснабжения достигается благодаря бесперебойной работе всех элементов энергосистемы и применению ряда технических устройств как в системе, так и у потребителей: устройств релейной защиты и автоматики, автоматического включения резерва, контроля и сигнализации. Качество электроснабжения определяется поддержанием на установленном уровне значений напряжения и частоты, а также ограничением в сети высших гармоник, не синусоидальности и несимметричности напряжения.

Экономичность электроснабжения достигается путем разработки совершенных систем распределения электроэнергии, использования рациональных конструкций комплектных распределительных устройств и трансформаторных подстанций и разработки оптимизации системы электроснабжения. На экономичность влияет выбор рациональных напряжений, оптимальных значений сечений проводов и кабелей, числа и мощности трансформаторных подстанций, средств и компенсации реактивной мощности и их размещение в сети.

Реализация этих требований обеспечивает снижение затрат при сооружении и эксплуатации всех элементов системы электроснабжения, выполнение с высокими технико-экономическими показателями этой системы, надежное и качественное электроснабжение промышленных предприятий.

1. ОБЩАЯ ЧАСТЬ

1.1 Краткие сведения о предприятии

Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств.

Состав цехов, устройств и сооружений завода определяется объемом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами.

Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии.

Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях.

Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке.

Состав энергетических и санитарно-технических устройств завода также может быть различным в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д.

Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. п., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы - готовыми двигателями и др.

1.2 Структура предприятия

Состав машиностроительного завода можно разделить на следующие группы:

1. Заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечно-штамповочные и др.);

2. Обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.);

3. Вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др.);

4. Складские устройства (для металла, инструмента, формовочных и шихтовых материалов и др.);

5. Энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки);

6. Транспортные устройства;

7. Санитарно-технические устройства (отопление вентиляция, водоснабжение, канализация);

8. Общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.).

Производство металлообрабатывающего оборудования, особенно станков, занимает важное место в машиностроении, обеспечивает его необходимыми основными производственными фондами. От наличного парка станков, их должного технологического уровня, оптимальной структуры по видовому составу и значимости в значительной степени зависят производственные возможности самого машиностроения, его соответствие современным требованиям и способности для технологического перевооружения всего производства и прежде всего машиностроения. Состояние и техникотехнологический уровень станкостроения, структура металлообрабатывающего устройства страны - один из основных показателей развития машиностроения, ее производственных возможностей.

1.3 Характеристика цеха

Цех механической сборки деталей предназначен для выпуска оборудования пищевой промышленности.

Цех является составной частью производства машиностроительного завода.

Цех предусматривает производственные, вспомогательные, служебные и бытовые помещения. Цех получает электроснабжение (ЭСН) от собственной цеховой трансформаторной подстанции (ТП) расположенной на расстоянии 1,5 км. От подстанции глубокого ввода (ПГВ) ЗАВОДА. Подводимое напряжение 6,10 или 35 кВ.

ПГВ подключено к энергосистеме (ЭНС), расположенной на расстоянии 8 км. Потребители ЭЭ относятся к 2 и 3 категории надежности ЭСН. Количество рабочих смен 2. Грунт в районе цеха - глина с температурой +50С. Каркас здания сооружен из блоков - секций длиной 6 и 8 м каждый. Размеры участка АхВхН=52х36х10м. Все помещения, кроме станочного отделения, двухэтажные.

Таблица 1- Перечень оборудования цеха

Номер на плане

Наименование оборудования

Установленная мощность (кВт)

Вертикально-фрезерный станок

Фрезерный станок

Универсально-фрезерный станок

Токарно-револьверный станок

Токарно-винторезный станок

Настольно-сверлильный станок

Резьбонарезной полуавтомат

Заточный станок

Листозагибочная машина

Точильно-шлифовальный станок

Радиально-сверлильный станок

Универсально-заточный станок

Плоскошлифовальный станок

Полировальный станок

Сварочная машина

Сварочная кабина

Вентиляторы

Размещено на http://www.allbest.ru/

1.4 Существующая схема электроснабжения

Для распределения электрической энергии внутри цехов промышленных предприятий служат электрические сети напряжением до 1000В.

Схема внутрицеховой сети определяется технологическим процессом производства, планировкой помещений цеха, взаимным расположением ЭП, ТП и вводов питания, расчетной мощностью, требованиями бесперебойности электроснабжения, условиями окружающей среды, технико-экономическими соображениями.

Питание ЭП цеха обычно осуществляется от цеховой подстанции ТП или ТП соседнего цеха.

Внутрицеховые сети делятся на:

· питающие

· распределительные.

Питающие сети отходят от центрального распределительного щита цеховой ТП к силовым распределительным шкафах СП, к распределительным шинопроводам ШРА или к отдельным крупным ЭП. В некоторых случаях питающая сеть выполняется по схеме БТМ ("Блок - трансформатор - магистраль").

Распределительные сети - это сети, идущие от силовых распределительных шкафов или шинопроводов непосредственно к ЭП. При этом ЭП подсоединяется к распределительным устройствам отдельной линией. Допускается подсоединять одной линией до 3-4 ЭП мощностью до З кВ, соединенные в цепочку.

По своей структуре схемы могут быть радиальными, магистральными и смешанными.

Радиальные схемы с использованием СП применяются при наличии сосредоточенных нагрузок с неравномерным их расположением по площади цеха, а также во взрыво- и пожароопасных цехах, в цехах с химически активной и пыльной средой. Они обладают высокой надежностью и применяются для питания ЭП любых категорий. Сети выполняются кабелями или изолированными проводами.

Магистральные схемы целесообразно применять для питания нагрузок распределительных относительно равномерно по площади цеха, а также для питания групп ЭП принадлежащих одной технологической линии. Схемы выполняются шинопроводами или кабелями. При нормальной среде для построения магистральных сетей можно использовать комплексные шинопроводы.

1.5 Выбор схемы электроснабжения

Важной технической задачей, которую нужно решать при проектировании электроснабжения, является выбор напряжения силовой и осветительной сети. От правильности выбора будут зависеть потери напряжения, электроэнергии и многие другие факторы. Выбор напряжения основывается на сравнении технико-экономических показателей различных вариантов. При выборе напряжения для питания силовых и осветительных потребителей следует отдавать предпочтение варианту с более высоким напряжением, так как чем больше величина U, тем меньше ток в проводах, тем меньше сечение, меньше потери мощности и энергии.

Выбор схемы электроснабжения приемников цеха зависит от многих факторов:

· мощности отдельных потребителей;

· расположения потребителей;

· площади цеха;

· технологического процесса цеха, определяющего категорию электроприемников по бесперебойности электроснабжения.

Система электроснабжения должна удовлетворять следующим требованиям:

· удобство и надежность обслуживания;

· надлежащее качество электроэнергии;

· бесперебойность и надежность электроснабжения как в нормальном, так и в аварийном режиме;

· экономичность системы, то есть наименьшие капитальные затраты и эксплуатационные издержки;

· гибкость системы, то есть возможность расширения производства без существенных дополнительных затрат.

Для передачи и распределения электроэнергии к цеховым потребителям применяем наиболее совершенную схему блока «трансформатор - магистраль», что удешевляет и упрощает сооружение цеховой подстанции. Такие схемы очень распространены и обеспечивают гибкость системы и ее надежность, а также экономичность в расходе материалов.

Для проектируемого цеха применяем систему трёхфазного переменного тока с напряжением 380/220 В с глухо заземлённой нейтралью, что позволяет питать от одних и тех же трансформаторов силовые и осветительные нагрузки. Силовые потребители питаются напряжением 380 В, а освещение напряжением 220В. Согласно требований Техники Безопасности питание цепей управления и местного освещения осуществляется пониженным напряжением: Цепи управления питаются напряжением 110 В, освещение 12 В или 24.

При питании силовой и осветительной сети от одно трансформаторной ТП возникает мигание света осветительных приборов, так как происходит запуск мощных двигателей и возникают большие пусковые токи. Поэтому питание осуществляют от двух трансформаторной КТП. Силовые приемники с большими и частыми пиковыми нагрузками нужно подключить к одному из трансформаторов КТП, а более «спокойную» нагрузку к другому трансформатору. В этом случае рабочее освещение необходимо запитывать от трансформатора со «спокойной» нагрузкой, а аварийное освещение от трансформатора с «неспокойной» нагрузкой, с тем чтобы обеспечить надлежащее качество рабочего освещения.

2. РАСЧЕТНАЯ ЧАСТЬ

2.1 Расчет освещения

Освещаемый объем помещения ограничивается ограждающими поверхностями, отражающими значительную часть светового потока, попадающего на них от источников света. В установках внутреннего освещения отражающими поверхностями являются пол, стены, потолок и оборудование, установленное в помещении. В тех случаях, когда поверхности, ограничивающие пространство, имеют высокие значения коэффициентов отражения, отраженная составляющая освещенности может иметь также большое значение и ее учет необходим, поскольку отраженные потоки могут быть сравнимы с прямыми и их недооценка может привести к значительным погрешностям в расчетах.

В процессе выполнения расчетной части необходимо:

а) выбрать систему освещения, источник света, тип светильника для заданного участка или рабочего помещения;

б) произвести расчет общего освещения рабочего помещения.

Цель расчета общего освещения - определить количество светильников необходимых для обеспечения Еmin и мощность осветительной установки, необходимых для обеспечения в цехе нормированной освещенности. Ниже рассмотрен расчет общего освещения методом коэффициента использования светового потока.

При расчете по указанному методу необходимый световой поток одной лампы определяется по формуле:

или количество светильников:

где Еmin - минимальная нормированная освещенность, лк;

k - коэффициент запаса (для ламп накаливания k=1,15, для люминесцентных и ламп ДРЛ,

S - освещаемая площадь, м2;

Z - коэффициент минимальной освещенности (коэффициент неравномерности освещения)(при расчете освещения от светильников с лампами накаливания и ДРЛ Z = 1,15)

N - число светильников;

n - число ламп в светильнике;

h - коэффициент использования светового потока в долях единицы.

Мощность осветительной установки Р определяется из выражения:

Где: Рi - потребляемая мощность одной лампы, кВт.

1.Выбрать систему освещения.

2. Обосновать нормированную освещенность на рабочих местах заданного объекта.

3. Выбрать экономичный источник света.

4. Выбрать рациональный тип светильника.

5. Оценить коэффициент запаса освещенности, k, и коэффициент неравномерности освещения, Z.

6. Оценить коэффициенты отражения поверхностей в помещении (потолка, стен, пола), r.

8. Найти коэффициент использования светового потока, h.

10. Выполнить эскиз расположения светильников на плане помещения с указанием размеров.

Принципы выбора основных элементов, необходимых для расчета

Выбор системы освещения:

В настоящей работе рассматривается только рабочее освещение, которое может быть общим и комбинированным. Устройство в производственных помещениях только местного освещения запрещено.

Выбор системы освещения зависит, прежде всего, от такого важнейшего фактора, как точность выполняемых зрительных работ (наименьший размер объекта различения), согласно действующим нормам при выполнении работ I - IV разрядов следует применять систему комбинированного освещения. В механических, инструментальных, сборочных и др., как правило, применяют систему комбинированного освещения. Выбор системы освещения производится одновременно с выбором нормированной освещенности.

Выбор нормированной освещенности:

Количественные и качественные показатели искусственного освещения определяют согласно действующим нормам.

В качестве количественной характеристики освещенности принята наименьшая освещенность рабочей поверхности Еmin, которая зависит от разряда зрительных работ, фона и контраста объекта с фоном и системы освещения.. Разряд зрительных работ определяется минимальным размером объекта различения, т.е. размером предмета, его части или дефекта на нем, которые необходимо обнаружить или различить в процессе производственной деятельности.

Качественные показатели освещения (коэффициент пульсации и показатель ослепления) в данной работе не рассматриваются.

Можно принять значение Еmin для точных работ III разряда 300-500 лк, для средней точности IV разряд 150 -300 лк, для работ малой точности V разряд 100 -150 лк. Меньшее значение освещенности в каждом разряде для светлого фона и большого контраста, большее для темного фона и малого контраста.

Определяющими параметрами при выборе экономичного источника света являются строительные параметры, архитектурно - планировочное решение, состояние воздушной среды, вопросы дизайна и экономические соображения.

Проектируя освещение, конструктор всегда принимает компромиссное решение.

Лампы накаливания - малоэкономичны, имеют светоодачу 7 -26 лм/Вт, они имеют искаженный спектр излучения, при работе сильно нагреваются. Но, с другой стороны они имеют низкую стоимость, просты в эксплуатации и могут быть рекомендованы для помещений с временным пребыванием людей, бытовых помещений и др.

В производственных помещениях высотой до 7 - 12 м целесообразно применять лампы типа ДРЛ, т.к. они более мощные и имеют большую светоотдачу до 90 лм/Вт.

Окончательный выбор источника света должен осуществляться одновременно с выбором типа светильника, частью которого он является.

Выбор светильников общего освещения производится на основе учета светотехнических, экономических требований, условий воздушной среды. Существует классификация светильников по светораспределению: прямого, преимущественно прямого, рассеянного, преимущественно отраженного и отражающего света.

Кроме этого существуют светильники с различными кривыми силы света: концентрированной, глубокой, косинусной, полу широкой, широкой, равномерной и синусной.

Согласно ГОСТ 14254-69 светильники классифицируют по степени защиты от пыли, воды и взрыва.

По конструктивному исполнению различают 7 эксплуатационных групп светильников. Ввиду чрезвычайного разнообразия светильников конкретный выбор светильника должен решаться совместно со специалистами по энергетике, экономистами, дизайнерами и с учетом требований по охране труда.

Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.

Таблица 2 Значения коэффициента k

Коэффициент минимальной освещенности Z характеризует неравномерность освещения. Он является функцией многих переменных, точное его определение затруднительно, но в наибольшей степени он зависит от отношения расстояния между светильниками к расчетной высоте (L / h).

Выбирают способ размещения светильников, который может быть симметричным или локализованным. При симметричном размещении светильники располагаются как вдоль, так и поперек помещения на одинаковом расстоянии, по углам прямоугольника или в шахматном порядке. Симметричное размещение светильников обеспечивает одинаковое освещение оборудования, станков, рабочих мест и проходов, но требует большого расхода электроэнергии. При локализованном расположении светильники размещают с учетом местонахождения станков, машин, оборудования, мест контроля и рабочих мест. Такое расположение светильников, сокращающее расход электроэнергии, применяют в цехах с несимметричным размещением оборудования.

Далее определяют отношение расстояния между светильниками L к высоте их подвеса h. В зависимости от типа светильника это отношение L / h при расположении светильников прямоугольником может быть принято равным 1,4-2,0, а при шахматном расположении -1,7-2,5.

Высота расположения светильника над освещаемой поверхностью

Hc=H - hcв - hp (4)

где: Н - общая высота помещения, м;

hcв - высота от потолка до нижней части светильника, м;

hр - высота от пола до освещаемой поверхности, м.

Чтобы уменьшить ослепляющее действие светильников общего освещения, высоту подвеса их над уровнем пола устанавливают не менее 2,5-4 м при лампах мощностью до 200 Вт и не менее 3-6 м при лампах большей мощности.

Потребное число светильников (ламп) n= S/LІ (при La = Lb).

При расположении светильников в линию (ряд), если выдержано наивыгоднейшее отношение L / h, рекомендуется принимать Z = 1,15 для ламп накаливания и ДРЛ.

Рис.1 Схема расположения светильников в помещении

Для определения коэффициента использования светового потока h находят индекс помещения i и предполагаемые коэффициенты отражения поверхностей помещения: потолка rп, стен rс, пола rр.

Для пыльных производственных помещений:

Индекс помещения определяется по следующему выражению:

где: А, В, h - длина, ширина и расчетная высота (высота подвеса светильника над рабочей поверхностью) помещения, м.

где: H - геометрическая высота помещения;

hсв - свес светильника.

Обычно: hсв = 0,2 ...0,8 м;

hp - высота рабочей поверхности.

hp = 0,8 ...1,0 м.

Коэффициент использования светового потока есть сложная функция, зависящая от типа светильника, индекса помещения, коэффициента отражения потолка стен и пола.

Промежуточные значения коэффициента использования находятся методом интерполяции.

При заданном Фл, т.е. известно какие лампы будут использоваться, находим N, т.е. сколько светильников надо применить.

При заданном N или n, определяем Фл. По найденному Фл выбирают ближайшую, стандартную лампу в пределах допусков - 10 ё +20 %.

Таблица 3 Значение коэффициента использования h для светильников с люминесцентными лампами, %

Пример расчета помещения методом коэффициента использования

Пример. В помещении с размерами А=52 м, В=36 м, H=10 м, hp=0,9 м и коэффициентами отражения потолка rп=30 %, стен rc=10 %, расчетной поверхности rр=10 % определить методом коэффициента использования светового потока освещение светильниками "Астра" с лампами накаливания для создания освещенности Е=50 лк.

Решение. В помещении с малым выделением пыли осветительную установку с лампами накаливания рассчитывают при коэффициенте запаса k=1,15. В светильнике "Астра" косинусное светораспределение. Поэтому оптимальное относительное расстояние между светильниками следует взять л=1,6. Приняв высоту света светильников hcв=0,5 м, получим расчетную высоту

hр=10-0,9-0,5=8,6 м

и расстояние между светильниками

L=8,6 Ч 1,6=13,76 м.

Число рядов светильников в помещении

Nb=36/13,76=2,6.

Число светильников в ряду

Na=52/13,76=3,77.

Округляем эти числа до ближайших больших Na=4 и Nb=3.

Общее число светильников

N= Na Ч Nb=4 Ч 3=12. (7)

Размещаем окончательно светильники.

По ширине помещения расстояние между рядами Lb=3,77 м, а расстояние от крайнего ряда до стены чуть больше 0,3L, а именно 1,13 м. В каждом ряду расстояние между светильниками примем также La=13,76 м, а расстояние от крайнего светильника до стены будет:

Это составляет 0,28 L=3,85

Индекс помещения

i=52 Ч 36/=1872/(8,6 Ч 88)=2,47.

По справочнику выбираем коэффициент использования светового потока з=0,6. Так как расстояние между светильниками практически равно оптимальному, то принимаем коэффициент минимальной освещенности z=1,15. Определяем необходимый световой поток лампы

Фл = 50 Ч 1,15 Ч 1872 Ч 1,15/(12 Ч 0,6) = 17192,5лм

Выбираем по таблице ближайшую стандартную лампу ДРЛ 250, имеющую поток Фл=11000 лм, что меньше расчетного значения

ДФ=(11000-17192,5)100/17192,5= - 3,6 %.

2.2 Расчет нагрузок и выбор силового трансформатора

При определении расчетных электрических нагрузок можно пользоваться основными методами:

1. упорядоченных диаграмм (метод коэффициента максимума);

2. удельного потребления электроэнергии на единицу продукции;

3. коэффициента спроса;

4. удельной плотности электрической нагрузки на 1 м2 производственной площади.

Расчет ожидаемых нагрузок приводится методом упорядоченных диаграмм, являющимся в настоящее время основным при разработке технических и рабочих проектов электроснабжения.

Расчетная максимальная мощность электроприемников определяется из выражения:

Pmax=Kmax * Kи * Pном = Kmax * Pсм, (8)

где: Kи - коэффициент использования;

Kmax - коэффициент максимума активной мощности;

Pсм - средняя активная мощность электроприемников за более загруженную схему.

Определите плановый фонд рабочего времени за анализируемый перида с учетом установленного режима работы. Для его расчета можно использовать производственный табель-календарь, если предприятие работает по пятидневной рабочей неделе. Если на производстве установлены смены, то плановый фонд рабочего времени рассчитывается, исходя из утвержденных графиков сменности. В данном примере плановая загрузка одного станка по времени на месяц будет равна: 30 дней на 24 часа = 720 часов.

Определяем число часов фактической работы станков в цехе за период. Для этого нам потребуются данные табелей учета рабочего времени. Найдем общее количество часов, отработанных персоналом цеха. Пусть за месяц рабочими цеха механической сборки деталей отработано было отработано 14784 человеко-часов, что соответствует фактическому времени работы станков.

Рассчитаем коэффициент использования оборудования ткацкого цеха по формуле:

Ки= (Фр/С)/Фп, (9)

где: Фр - фактическое количество отработанного времени всеми станками, час,

С - количество станков в цехе, шт,

Фп - плановый фонд рабочего времени, час.

В данном примере коэффициент использования оборудования будет равен:

14784/42/720 = 0,5.

Следовательно, станки ткацкого цеха за месяц использовались на 50%. Остальные 50% - это его простои.

Для группы электроприемников за более загруженную смену режима работы средняя активная и реактивная нагрузки определяются по формуле:

Рсм = Кu * Рном (10)

Qсм = Pсм * tg ц, (11)

где tg ц - соответствует средневзвешенному cos ц для электроприемников данного режима работы.

Средневзвешенный коэффициент использования определяется по формуле:

КU.СР.ВЗ. = ?Рсм / ?Рном, (12)

где?Рсм - суммарная мощность электроприемников и групп за наиболее загруженную смену;

Рном - суммарная номинальная мощность электроприемников в группе.

Относительное число электроприемников определяется по формуле:

где n1 - число крупных приемников в группе;

n - число всех приемников в группе.

Относительная мощность наибольших по мощности электроприемников определяется из выражения:

Р* = ?Рn 1/?Рном, (14)

где?Рn 1 - суммарная активная номинальная мощность крупных электроприемников группы;

Рном - суммарная активная номинальная мощность электроприемников группы.

Основное эффективное число электроприемников в группе определяется по справочным таблицам, исходят из значений n* и Р*

n*э = f(n*; P*) (15)

Эффективное число электроприемников в группе определяется по формуле:

Nэ = n*э * n (16)

Коэффициент максимума определяется по справочным таблицам, исходя из значений nэ и КU.СР.ВЗ.:

Кmax = f(Nэ; КU.СР.ВЗ.) (17)

Расчетная максимальная активная мощность цепи:

Рмах = Кмах * ?Рсм (18)

Расчетная максимальная реактивная мощность в цепи:

Qmax = 1.1 ?Qсм (19)

Полная расчетная мощность группы определяется по формуле:

Smax = vPmax2 + Qmax2 (20)

Максимальный расчетный ток группы определяется по формуле:

Imax = Smax/(v3 * Uном) (21)

Расчет ожидаемых нагрузок цеха металлорежущих станков.

1. Определяем среднюю активную и реактивную мощности за более загруженную схему электроприемников.

Пример расчета для станков позиции 1-3

Рсм1-3 = Рном Ч Ки = 3 Ч 0,5 Ч 3 = 4,5 кВт (22)

Qсм1-3 = Рсм1-3 Ч tgц = 4,5 Ч 0,75 = 3,4 кВАр (23)

Остальные данные по расчету представлены в таблице 5

2. Определяем суммарную мощность по группе:

Pном = 3Pсм1-3 + 2Pсм4,5 + 2Pсм6,7 + 4Pсм8-11 + 2Pсм12-13+ 8Pсм14-21 + 3Pсм22-24 + 2Pсм25-26 + 1Pсм27 + 4Pсм28-31+ 3Pсм32-34 + 2Pсм35-36 + 2Pсм37-38+ 1Pсм39 + 2Pсм40-41 + 1Pсм42 + 6Pсм43-48 + 2Pсм 49-50 = 216,5 кВт (24)

3. Суммируем активные и реактивные нагрузки:

Pсм = Pсм1-3 + Pсм4,5 + Pсм6,7 + Pсм8-11 + Pсм12-13+ Pсм14-21 + Pсм22-24 + Pсм25-26 + Pсм27 + Pсм28-31+ Pсм32-34 + Pсм35-36 + Pсм37-38+ Pсм39 + Pсм40-41 + Pсм42 + Pсм43-48 + Pсм 49-50 = 108,25 кВт (25)

Qсм = Qсм1-3 + Qсм4,5 + Qсм6,7 + Qсм8-11 + Qсм12-13+ Qсм14-21 + Qсм22-24 + Qсм25-26 + Qсм27 + Qсм28-31+ Qсм32-34 + Qсм35-36 + Qсм37-38+ Qсм39 + Qсм40-41 + Qсм42 + Qсм43-48 + Qсм 49-50 = 81,21 кВАр. (26)

4. Определяем средневзвешенное значение коэффициента использования:

Ки.ср.вз = 108,25 /216,5 = 0,5

5. Определяем относительное число электроприемников:

N* = 12/42 = 0,3

6. Определяем относительную мощность наибольших по мощности электроприемников:

Р* = 119/216,5 = 0,55 кВт

7. Основное эффективное число электроприемников в группе определяем исходя из значений N*и Р*:

8. Определяем эффективное число электроприемников в группе:

Nэ = 0,68 Ч 42 = 28,56

9. Коэффициент максимума Кмах служит для перехода от средней нагрузки к максимальной. Коэффициент максимума активной мощности определяем исходя из значений nэ и Ки.ср.вз:

10. Определяем расчетную максимальную активную мощность цепи:

Рмах = 0,51 Ч 108,25 = 55,21 кВт

11. Определяем расчетную максимальную реактивную мощность цепи:

Qмах = 1,1 Ч 81,21 = 89,33 кВАр

12. Определяем полную расчетную мощность группы:

13. Определяем максимальный расчетный ток группы:

Iмах = 105,01/(1,73 Ч 0,38) = 159,7 А

Таблица 5 Сводная ведомость электрических силовых нагрузок по цеху

Наименование

Рмах, кВт

Qмах, кВАр

Вертикально-фрезерный станок

Фрезерный станок

Универсально-фрезерный станок

Токарно-револьверный станок

Токарно-винторезный станок

Настольно-сверлильный станок

Резьбонарезной полуавтомат

Заточный станок

Листозагибочная машина

Точильно-шлифовальный станок

Вертикально-сверлильный станок

Радиально-сверлильный станок

Универсально-заточный станок

Плоскошлифовальный станок

Полировальный станок

Сварочная машина

Сварочная кабина

Вентиляторы

Выбор числа и мощности силовых трансформаторов для главных понизительных подстанций (ГПП) промышленных предприятий должен быть технически и экономически обоснован, так как это оказывает существенное влияние на рациональное построение схем промышленного электроснабжения. При выборе числа и мощности силовых трансформаторов используют методику технико-экономических расчетов, а также учитывают такие показатели, как надежность электроснабжения потребителей, расход цветного металла и потребная трансформаторная мощность. Для удобства эксплуатации систем промышленного электроснабжения стремятся к применению не более двух-трех стандартных мощностей трансформаторов, что ведет к сокращению складского резерва и облегчает взаимозаменяемость трансформаторов. Желательна установка трансформаторов одинаковой мощности, но такое решение не всегда выполнимо. Выбор трансформаторов следует производить с учетом схем электрических соединений подстанций, которые оказывают существенное влияние на капитальные вложения и ежегодные издержки по системе электроснабжения в целом, определяют ее эксплуатационные и режимные характеристики.

В целях удешевления подстанций (ГПП или ГРП) напряжением 35 -- 220 кВ широко применяют схемы без установки выключателей на стороне высшего напряжения (по схеме блока линия -- трансформатор), приведенные на рис. 1. Цеховые трансформаторы, как правило, не должны иметь распределительного устройства на стороне высшего напряжения (рис. 2). Следует широко применять непосредственное (глухое) присоединение питающего кабеля к трансформатору при радиальных схемах питания трансформатора (рис. 2, а) или присоединение через разъединитель или выключатель нагрузки при магистральных схемах питания (рис. 2,6, в, г). При магистральной схеме питания трансформатора мощностью 1000 кВ А и выше вместо разъединителя устанавливают выключатель нагрузки, так как при напряжении 6 -- 20 кВ разъединителем можно отключать XX трансформатора мощностью не более 630 кВ А. В настоящее время вновь сооружаемые цеховые трансформаторные подстанции выполняют комплектными (КТП), полностью изготовленными на заводах и крупными блоками монтируемыми на промышленных предприятиях.

Рис. 2 Конструктивно цеховые трансформаторные подстанции (ТП) подразделяют на внутрицеховые, которые размещают в многопролетных цехах; встроенные в контур цеха, но имеющие выкатку трансформаторов наружу; пристроенные к зданию; отдельно расположенные на территории предприятий, которые применяют при невозможности размещения внутрицеховых, встроенных или пристроенных подстанций по условиям производства.

Рис. 3. Основные схемы подключения цеховых ТП с высшим напряжением 6 -- 20 кВ: а -- глухое присоединение; б, в, г -- присоединение ТП через коммутационные аппараты (ВН -- выключатель нагрузки, Р -- разъединитель, ВНП -- выключатель нагрузки с предохранителем)

Выбор числа трансформаторов связан с режимом работы станции или подстанции. График нагрузки может быть таким, при котором по экономическим соображениям необходимо установить не один, а два трансформатора. Такие случаи, как правило, имеют место при плохом коэффициенте заполнения графика нагрузки (0,5 и ниже). В этом случае установка отключающих аппаратов необходима для оперативных действий (производящихся дежурным персоналом или происходящих автоматически) с силовыми трансформаторами при соблюдении экономически целесообразного режима их работы. Важными факторами, наиболее существенно влияющими на выбор номинальной мощности трансформатора и, следовательно, на его экономически целесообразный режим работы, являются температура охлаждающей среды в месте его установки и график нагрузки потребителя (изменения нагрузки в течение суток, недели, месяца, сезона и года).

Выбор типа трансформаторов производят с учетом условий их установки, температуры окружающей среды и т. п. Основное применение на промышленных предприятиях находят двухобмоточные трансформаторы. Трехобмоточные трансформаторы 110/35/6 -- 20 кВ на ГПП применяют лишь при наличии удаленных потребителей средней мощности, относящихся к данному предприятию. Трансформаторы с расщепленными обмотками 110/10--10 кВ или 110/6--10 кВ применяют на предприятиях с напряжениями 6 и 10 кВ при необходимости снижения тока КЗ и выделения питания ударных нагрузок.

Рис. 4. Однолинейные схемы электрических соединений ГПП с двумя трансформаторами без выключателей на стороне высшего напряжения: а --с короткозамыкателями и отделителями; б -- только с короткозамыкателями; в --с разъединителями и предохранителями типа ПСН.

Трансформаторы ГПП напряжением 35 -- 220 кВ изготовляют только с масляным охлаждением и обычно устанавливают на открытом воздухе. Для цеховых ТП с высшим напряжением 6 -- 20 кВ применяют масляные трансформаторы типов ТМ, ТМН, ТМЗ, сухие трансформаторы типа ТСЗ (с естественным воздушным охлаждением) и трансформаторы типа ТНЗ с негорючей жидкостью (совтол). Масляные трансформаторы цеховых ТП мощностью SHOM.T «S < 2500 кВ * А устанавливают на открытом воздухе и внутри зданий. Внутрицеховые ТП, в том числе и КТП, применяют только в цехах I и II степени огнестойкости с нормальной окружающей средой (категории Г и Д по противопожарным нормам). Число масляных трансформаторов на внутрицеховых подстанциях не должно быть более трех. Мощность открыто установленной КТП с масляными трансформаторами допускают до 2 х 1600 кВА. При установке на втором этаже здания допустимая мощность внутрицеховой подстанции должна быть не более 1000 кВ * А. Сухие трансформаторы мощностью SH0M T sg 1000 кВ- А применяют для установки внутри административных и общественных зданий, в лабораториях и других помещениях, к которым предъявляют повышенные требования в отношении пожаробезопасности (некоторые текстильные предприятия и т. п.). Сухие трансформаторы небольшой мощности (10 -- 400 кВА) размещают на колоннах, балках, фермах, так как они не требуют маслосборных устройств. Трансформаторы (совтоловые) типа ТНЗ предназначены для установки внутри цехов, где недопустима открытая установка масляных трансформаторов. Герметизированные совтоловые трансформаторы не требуют в условиях эксплуатации ни ревизии, ни ремонта. Их ремонт и ревизию производят на заводах-изготовителях.

Основными требованиями при выборе числа трансформаторов ГПП и цеховых ТП являются: надежность электроснабжения потребителей (учет категории приемников электроэнергии в отношении требуемой надежности), а также минимум приведенных затрат на трансформаторы с учетом динамики роста электрических нагрузок.

При проектировании подстанции учитывают требования, исходя из следующих основных положений. Надежности электроснабжения потребителей I категории достигают за счет наличия двух независимых источников питания, при этом обеспечивают резервирование питания и всех других потребителей. При питании потребителей I категории от одной подстанции необходимо иметь минимум по одному трансформатору на каждой секции шин, при этом мощность трансформаторов выбирают так, чтобы при выходе из строя одного из них второй (с учетом допустимой перегрузки) обеспечивал питание всех потребителей I категории. Резервное питание потребителей I категории вводится автоматически. Потребителей II категории обеспечивают резервом, вводимым автоматически или действиями дежурного персонала. При питании этих потребителей от одной подстанции следует иметь два трансформатора или складской резервный трансформатор для нескольких подстанций, питающий потребителей II категории, при условии, что замена трансформатора может быть произведена в течение нескольких часов. На время замены трансформатора вводят ограничение питания потребителей с учетом допустимой перегрузки оставшегося в работе трансформатора. Потребители III категории получают питание от однотрансформаторной подстанции при наличии «складского» резервного трансформатора.

При выборе числа трансформаторов исходят из того, что сооружение однотрансформаторных подстанций не всегда обеспечивает наименьшие затраты. Если по условиям резервирования питания потребителей необходима установка более чем одного трансформатора, то стремятся, чтобы число трансформаторов на подстанции не превышало двух. Двухтрансформаторные подстанции экономически более целесообразны, чем подстанции с одним или большим числом трансформаторов. При сооружении двух- трансформаторных подстанций ГПП выбирают наиболее простую схему электрических соединений со стороны высшего напряжения. Все остальные решения (подстанции с тремя и большим числом трансформаторов) являются обычно более дорогими. Однако они могут быть необходимы, когда приходится строить подстанции для питания потребителей, требующих разных напряжений. Главные понизительные подстанции, подстанции глубоких вводов (ПГВ) и цеховые ТП выполняют с числом трансформаторов не более двух. Для потребителей III и частично II категорий рассматривают вариант установки одного трансформатора с резервным питанием от соседней трансформаторной подстанции. В этом случае резервная подстанция является второй подстанцией и должна иметь запас мощности. На цеховых подстанциях с двумя трансформаторами рабочие секции шин низшего напряжения целесообразно держать в работе раздельно. При таком режиме ток КЗ уменьшается в 2 раза и облегчаются условия работы аппаратов напряжением до 1 кВ. При отключении одного работающего трансформатора второй принимает на себя нагрузку отключившегося в результате включения секционного автоматического выключателя.
В настоящее время цеховые ТП выполняют комплектными (КТП). Правильное определение числа КТП и мощности трансформаторов на них возможно только на основе технико-экономических расчетов (ТЭР) с учетом компенсации реактивных нагрузок на напряжении до 1 кВ. Число цеховых трансформаторов изменяется от минимально возможного Nmm (при полной компенсации реактивных нагрузок) до максимального Nmax (при отсутствии компенсирующих устройств) при среднем для всех ТП значении коэффициента загрузки Kt T. На двух- трансформаторных цеховых подстанциях при преобладании нагрузок I категории К-,. , принимают в пределах 0,65 -- 0,7; при преобладании нагрузок II категории 0,7--0,8, а при нагрузках III категории 0,9 -- 0,95. Минимальное и максимальное число цеховых трансформаторов определяют по выражениям

где: Ртах, Smax -- расчетная нагрузка цеха; SHom,t -- номинальная мощность цехового трансформатора.

Изменение числа цеховых трансформаторов (при т = const) приводит к изменению приведенных затрат на РУ 6 -- 20 кВ, на цеховые сети 0,4 кВ, на распределительные сети 6-20 кВ. При выборе числа трансформаторов на цеховых ТП учитывают, что предельная мощность трансформаторов, изготавливаемых в настоящее время заводами-изготовителями на напряжение 0,4-0,66 кВ, составляет 2500 кВ А.

Мощность силовых трансформаторов в нормальных условиях должна обеспечивать питание всех приемников электроэнергии промышленных предприятий. Мощность силовых трансформаторов выбирают с учетом экономически целесообразного режима работы и соответствующего обеспечения резервирования питания потребителей при отключении одного трансформатора и того, что нагрузка трансформаторов в нормальных условиях не должна (по нагреву) вызывать сокращения естественного срока его службы. Промышленные предприятия страны увеличивают свою производственную мощность за счет строительства новых цехов, освоения новых или более рационального использования существующих площадей. Поэтому предусматривают возможность расширения подстанций за счет замены установленных трансформаторов более мощными. В связи с этим аппаратуру и ошиновку в цепях трансформаторов выбирают по расчетным параметрам с учетом установки в перспективе трансформаторов следующей по шкале ГОСТ номинальной мощности. Например, если на подстанции устанавливают два трансформатора мощностью по 16000 кВ А, то их фундаменты и конструкции предусматривают установку двух трансформаторов мощностью по 25 000 кВ * А без существенных переделок подстанции.

Подобные документы

    Расчет электрических нагрузок цеха методом коэффициента максимума. Выбор сечения и марки проводов. Определение токов короткого замыкания, заземляющего устройства. Мероприятия по организации электромонтажных работ. Направления развития капстроительства.

    курсовая работа , добавлен 18.04.2011

    Система электроснабжения металлургических предприятий. Основное оборудование на подстанции. Характеристика работающего электрооборудования. Расчет токов короткого замыкания в сети. Расчет и выбор коммутационных аппаратов и силового трансформатора.

    курсовая работа , добавлен 08.05.2013

    Электроснабжение ремонтно-механического цеха. Установка компрессии буферного азота. Расчет электрических нагрузок систем электроснабжения. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания и релейной защиты силового трансформатора.

    методичка , добавлен 15.01.2012

    Разработка схемы электроснабжения промышленного предприятия. Расчет электрических нагрузок и токов короткого замыкания. Определение числа и мощности трансформаторов. Подбор высоковольтного электрооборудования, аппаратов защиты и заземляющего устройства.

    курсовая работа , добавлен 16.04.2014

    Расчет электрических нагрузок. Выбор схемы электроснабжения и напряжения. Расчет и выбор мощности трансформаторов. Расчет токов короткого замыкания. Релейная защита силового трансформатора. Расчет защитного заземления. Перенапряжения и молниезащита.

    дипломная работа , добавлен 20.02.2015

    Характеристика монтажного участка электромеханического цеха. Расчет электрических нагрузок, освещения, потерь мощности в трансформаторе, токов короткого замыкания. Выбор элементов питающей и распределительной сетей. Расчет заземляющего устройства.

    курсовая работа , добавлен 24.11.2014

    Эксплуатация, испытания, техническое обслуживание, ремонт и утилизация силового трансформатора. Расчёт кривой жизни электрооборудования и заземляющего устройства для защиты персонала. Организация строительных, электромонтажных и пуско-наладочных работ.

    курсовая работа , добавлен 10.04.2012

    Детальная разработка электроснабжения цеха ЗРДТ "КЭЦ". Определение нагрузок на воздушную линию электропередачи, номинальных токов и токов короткого замыкания. Выбор электрооборудования понизительной подстанции. Расчет схемы заземления и молниезащиты.

    дипломная работа , добавлен 07.07.2015

    Расчет токов короткого замыкания для выбора и проверки параметров электрооборудования, уставок релейной защиты. Характеристика потребителей электроэнергии. Выбор числа и мощности силовых трансформаторов. Расчет силовой и осветительной нагрузок цеха.

    контрольная работа , добавлен 23.11.2014

    Общая характеристика здания цеха и потребителей электроэнергии. Анализ электрических нагрузок. Расчет и выбор компенсирующего устройства, мощности трансформаторов, сетей, аппаратов защиты, высоковольтного электрооборудования и заземляющего устройства.

Электроснабжение участка механического цеха №19

Курсовая

Энергетика

Цеховые сети распределения электроэнергии должны: обеспечивать необходимую надёжность электроснабжения приёмников электроэнергии в зависимости от их категории; быть удобными и безопасными в эксплуатации; иметь оптимальные технико-экономические показатели минимум приведённых затрат...

МИНОБРНАУКИ РОССИИ

Орский гуманитарно-технологический институт (филиал)

федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

«Оренбургский государственный университет»

(Орский гуманитарно-технологический институт (филиал) ОГУ)

Механико-технологический факультет

Кафедра «Электроэнергетики и электротехники»

КУРСОВОЙ ПРОЕКТ

по дисциплине «Электроснабжение предприятий и электропривод»

Электроснабжение участка механического цеха №19

Пояснительная записка

ОГТИ 140106. 65 6 4. 14. 019 ПЗ

Руководитель

канд. техн. наук

Давыдкин М.Н.

«___»______________2014 г.

Исполнитель

Студент гр. 10ЭОП

Саенко Д.А.

«___»______________2014 г.

Орск 2014

Задание……………………………………………………………………………3

Аннотация………………………………………………………………………..5

Введение………………………………………………………………………….6

1. Краткая характеристика электроприемников цеха……………………….…..8

2. Выбор и обоснование схемы электроснабжения цеха…………………….…9

3. Расчет электрических нагрузок участка цеха………………………………..10

4. Выбор марки и сечения токоведущих частей (проводов, кабелей,

шинопроводов)………………………………………………………………….…16

5. Выбор коммутационной и защитной аппаратуры……………………………18

6. Выбор мощности трансформаторов цеховой подстанции. Компенсация

реактивной мощности………………………………………………………….....21

7. Расчет питающей линии 10 кВ………………………………………………...25

8. Конструктивное выполнение цеховой сети…………………………………..31

Заключение………………………………………………………………………33

Список использованных источников……………………………………… ….34


Задание

Тема: Электроснабжение участка механического цеха.

Вариант 19


  1. На ГПП установлены 2 трансформатора марки ТМН – 10000/110.
  2. Расстояние от ГПП до цеха 0,6 км; от ГПП до подстанции энергосистемы 12 км.
  3. Мощность короткого замыкания на шинах 110 кВ подстанции энергосистемы S k = 1500 МВА.

Введение

Системой электроснабжения (СЭС) называют совокупность устройств для производства, передачи и распределения электроэнергии. Системы электроснабжения промышленных предприятий создаются для обеспечения питания электроэнергией промышленных приёмников, к которым относятся электродвигатели различных машин и механизмов, электрические печи, электролизные установки, аппараты и машины для электрической сварки, осветительные установки и др.

В настоящее время большинство потребителей получает электроэнергию от энергосистем.

По мере развития электропотребления усложняются системы электроснабжения промышленных предприятий. В них включаются сети высоких напряжений, распределительные сети, а в ряде случаев и сети промышленных ТЭЦ.

На пути от источника питания до электроприёмников на современных промышленных предприятиях электрическая энергия, как правило, трансформируется один или несколько раз. В зависимости от места расположения в схеме электроснабжения трансформаторные подстанции называют главными понизительными подстанциями или цеховыми трансформаторными подстанциями.

Цеховые сети распределения электроэнергии должны:

  • обеспечивать необходимую надёжность электроснабжения приёмников электроэнергии в зависимости от их категории;
  • быть удобными и безопасными в эксплуатации;
  • иметь оптимальные технико-экономические показатели (минимум приведённых затрат);
  • иметь конструктивное исполнение, обеспечивающее применение индустриальных и скоростных методов монтажа

Для приёма и распределения электроэнергии к группам потребителей

трёхфазного переменного тока промышленной частоты напряжением 380 В применяют силовые распределительные шкафы и пункты.

Главной проблемой в ближайшем будущем явится создание рациональных систем электроснабжения промышленных предприятий, которое связано со следующим:

  • выбором и применением рационального числа трансформаций (оптимальный вариант числа трансформаций – две-три);
  • выбором и применением рациональных напряжений (в системах электроснабжения промышленных предприятий даёт значительную экономию в потерях электроэнергии);
  • правильным выбором места размещения цеховых и главных распределительных (понизительных) подстанций (обеспечивает минимальные годовые приведённые затраты);
  • дальнейшим совершенствованием методики определения электрических нагрузок (способствует решению общей задачи оптимизации построения систем внутризаводского электроснабжения);
  • рациональным выбором числа и мощности трансформаторов, а также схем электроснабжения и их параметров, что ведёт к сокращению потерь электроэнергии и повышению надёжности;
  • принципиально новой постановкой для решения таких задач, как, например, симметрирование (выравнивание) электрических нагрузок.

1.Краткая характеристика электроприёмников цеха.

При определении электрических нагрузок действующих или проектируемых промышленных предприятий необходимо учитывать режим работы, мощность, напряжение, род тока и надежность питания электроприемников.

По режиму работы электроприемники могут быть разделены на три группы:

с продолжительным режимом работы;

с повторно-кратковременным режимом работы;

с кратковременным режимом работы.

Нагревательные печи, сушильные шкафы - составляют группу электропрёмников, работающих в продолжительном режиме с постоянной или мало меняющейся нагрузкой. Печи и сушильные шкафы мощностью 2,5÷70 кВт относиться к потребителям малой и средней мощности, питаются от напряжения 380 В промышленной частоты 50Гц.

Станки работают длительно, но с переменной нагрузкой и кратковременными отклонениями, за время которых электродвигатель не успевает охладиться до температуры окружающей среды, а длительность циклов превышает 10 мин. По мощности относятся к потребителям малой и средней мощности, питаются от сети 380 В промышленной частоты 50 Гц.

Вентиляторы – работают в продолжительном режиме, без отключения, от нескольких часов до нескольких смен подряд, с достаточно высокой, неизменной или мало меняющейся нагрузкой. Относятся к потребителям малой и средней мощности, питаются от сети 380В промышленной частоты.

Кран – работает в повторно кратковременном режиме с продолжительностью выключения 40%. Мощность 2,2 кВт, питается от сети 380В промышленной частоты 50 Гц.

Сварочные трансформаторы – работают в повторно кратковременном режиме с постоянными большими бросками мощности, продолжительностью включения 40%, мощность 48 кВА и 42кВА, питаются от сети 380 В промышленной частоты 50 Гц. Механический участок относится к потребителям второй категории.

2. Выбор и обоснование схемы электроснабжения.

Цеховые распределительные сети должны:

Обеспечивать необходимую надёжность электроснабжения приёмников электроэнергии в зависимости от их категорийности.

Быть удобными и безопасными в эксплуатации.

Иметь оптимальные технико-экономические показатели.

Иметь конструктивное исполнение, обеспечивающее применение индустриальных и скоростных методов монтажа.

Поэтому для питания цеха выбирается магистральная схема электроснабжения, что обеспечивает малое число присоединений, а следовательно уменьшение строительной части; малое изменение сети при изменении расположения технологического оборудования; меньшие потери электроэнергии. Наряду с достоинствами схемы существуют и недостатки:

Меньшая надёжность магистральных схем по сравнению с радиальными.

Труднее обеспечить селективность защит.

Схема выполнена распределительными шинопроводами типа ШРА, которые предназначены для питания электроприёмников малой и средней мощности, равномерно распределенных вдоль линии магистрали.

3.Расчёт электрических нагрузок цеха.

Расчет электрических нагрузок участка цеха выполняется методом упорядоченных диаграмм с применением коэффициента расчетной нагрузки. Предварительно номинальная мощность приёмников с повторно-кратковременным режимом работы приводится к ПВ-100% по формулам:

Р н = Р пасп - для электродвигателей (1)

Р н = S пасп cosφ - для сварочных трансформаторов и

Сварочных машин (2)

Р н = S пасп cosφ - для трансформаторов электропечей (3)

где Р пасп (кВт), S пасп (кВт), ПВ - паспортные данные мощности и продолжительности включения в относительных единицах;

cosφ – паспортный коэффициент активной мощности.

Мощности сварочных трансформаторов

кВт

кВт

Мощность преобразовательного агрегата

КВт

Мощность мостового крана

КВт

Расчет электрических нагрузок напряжением до 1 кВ производится для каждого узла питания (распределительного пункта, шинопровода распределительного, шинопровода магистрального, цеховой трансформаторной подстанции или по цеху в целом).

Принимаем следующие значения коэффициента использования электроприемников, который взят из .

Модуль сборки узла питания определяется:

, (2)

где:

Максимальная номинальная мощность электроприемника подключенного к узлу питания, кВт;

Минимальная номинальная мощность электроприемника подключенного к узлу питания, кВт.

Таблица 1 - Коэффициенты использования для оборудования

Наименование

Коэффициент ис-пользования, Ки

Молот ковочный МА411,
Шкаф сушильный, Кран мостовой

Электропечь камерная Н-30,
Карусельный станок,
Плоскошлифовальный станок

0,17

Преобразовательный агрегат,
Сварочные трансформаторы

Полировальный станок,
Продольно-строгальный станок 72.10

0,14

Печь камерная ОКБ-330,
Печь муфельная МП-25

Заточный станок 3641

0,12

Вентилятор

Для узла питания определяется значение модуля сборки:

где Р н.макс1 , Р н.мин1  максимальная и минимальная мощность одного электроприёмника для узла питания.

Средние значения активной и реактивной мощностей за наиболее загруженную смену для групп приёмников:

(3)

, (4)

где - коэффициент использования электроприемника;

Сумма номинальных мощностей электроприемников, кВт.

Средняя мощность для узла питания определяется суммированием актиных, средних и реактивных мощностей групп электроприемников.

Средневзвешенные значения коэффициента использования и коэффициента реактивной мощности:

(5)

(6)

Определение эффективного числа электроприёмников n Э :

Для узла питания записывается значение n Э  эффективное число электроприёмников, которое определяется по формуле:

При числе электроприёмников более пяти, эффективное число электроприёмников (n Э ) определяется по упрощенным формулам в зависимости от модуля сборки и средневзвешенного значения коэффициента использования:

а) если K u > 0.2, а m < 3, то n Э = n

б) если K u < 0.2, а m < 3, то n Э не определяется, а расчетная нагрузка будет:

, (8)

где:

К з = 0,75 - для повторного кратковременного режима;

К з = 0,9 - для продолжительного режима;

К з = 1,0 - для автоматических линий.

В) если,а, то:

(9)

г) если, а, то:

эффективное число электроприёмников () определяется следующим образом:

1) определяется число электроприёмников, мощность которых равна или больше половины мощности наибольшего приёмника;

2) определяется суммарная мощность этих электроприёмников;

3) определяются относительные значения

(10)

(11)

4) по /4,58/ определяется эффективное относительное число электроприёмников *

5) определяется эффективное число электроприёмников

(12)

, (13)

где - коэффициент расчетной нагрузки.

Значение коэффициента расчетной нагрузки определяется по /4,100/ в зависимости от средневзвешенного коэффициента использования и эффективного числа электроприемников n Э .

При n э  10 (14)

При n э  10 (15)

Полная расчетная мощность, кВА:

(16)

Расчетный ток, А:

(17)

Пример расчета для РП 1

  1. Количество электроприемников n = 3
  2. Установленная мощность кВт
  3. Сумма номинальных мощностей 118,5кВт
  4. Коэффициенты использования:

карусельный станок

продольно строгательный станок

карусельный станок

  1. Средняя мощность:

Продольно строгательный станок:

Карусельный станок:

КВт

  1. Модуль сборки:
  1. Средняя мощность для узла питания:

КВт

КВар

  1. Эффективное число электроприемников:

Так как для РП1 и то

  1. Средневзвешенное значение коэффициента использования:
  1. Средневзвешенное значение коэффициента реактивной мощности:
  1. Коэффициент расчетной нагрузки для и:
  1. Расчетный ток:

Расчет для остальных электроприемников производится аналогично.

Результаты расчетов сводятся в таблицу 2.

4 Выбор марки и сечений токоведущих частей

Выбор производится на примере кабеля от ШРА1 до шкафа РП1

Сечение проводов и кабелей выбирается по условию нагрева для нормальных условий эксплуатации:

Выбирается кабель марки ВВГ 4×16, для которого:

60,9 А<70А – условие выполняется.

(18)

где – потери напряжения в проводнике, В;

– допустимые потери напряжения, В.

(19)

– удельные активное и индуктивное сопротивления проводника;

l – длина кабеля (определяется по рисунку 1);

0,621< 20 В - условие выполняется.

Если выбранное сечение не проходит по потерям напряжения, то сечение нужно завышать.

Сечение проверяется на соответствие току защитного аппарата:

(20)

где – коэффициент защиты, принимается в зависимости от среды и

конструктивного выполнения токоведущих частей;

– ток защитного аппарата, принимается ток плавкой вставки предохранителя или ток срабатывания теплового расцепителя автомата, А.

Проверка по данному условию возможна только после выбора защитной аппаратуры на стороне питания, пример расчета приведен далее:

Расчет остальных токоведущих частей аналогичен вышеприведенному.

Результаты расчетов сводятся в таблицу 3.


5.Выбор защитной и коммутационной аппаратуры.

Для практического расчёта электрических сетей напряжением до 1000 В выбор защитной коммутационной аппаратуры может быть выполнен следующим образом:

1. Выбор предохранителей производится исходя из условий:

где – номинальное напряжение предохранителя, В;

– напряжение установки в которой применяется предохранитель, В.

где – номинальный ток предохранителя, А;

– расчетный ток, А.

где – номинальный ток плавкой вставки предохранителя, А;

, (21)

где – коэффициент, учитывающий увеличение тока при пуске двигателя.

– при частых и лёгких пусках;

– при тяжёлых и редких пусках;

– пусковой ток двигателя, А.

(22)

где– кратность пускового тока

– номинальный ток двигателя, А.

(23)

где – кратковременный (пиковый) ток по ;

(24)

где – наибольший из пусковых токов двигателей группы приёмников;

– расчётный ток группы приёмников;

– номинальный ток двигателя (приведённый к ПВ=1) с наибольшим из пусковых токов;

– коэффициент использования, характерный для двигателя, имеющего наибольший пусковой ток.

Выбор производится на примере вентилятора:

Выбирается предохранитель ПР2 100/100 для которого:

, ;

Принятый предохранитель соответствует вышеизложенным требованиям.

  1. Выбор автоматических выключателей:

Условия выбора:

где, – соответственно номинальный ток автоматического выключателя и номинальный ток расцепителя, А;

Для защиты присоединений с равномерной нагрузкой:

где – номинальный ток теплового расцепителя автомата;

– номинальный ток электромагнитного расцепителя автомата;

Для ответвлений к двигателям:

; (25)

Для линий со смешанной нагрузкой:

(26)

Производится выбор на примере ответвления к двигателю вентилятора. Выбирается выключатель Sirius 3RV1031-4FB10, для которого (смотрим по каталогу):

Выбранный выключатель Sirius 3RV1031-4FB10 отвечает поставленным условиям.

Результаты выбора предохранителей и автоматических выключателей заносятся в таблицу 4.


6. Выбор мощности трансформаторов цеховой подстанции.

Компенсация реактивной мощности.

Вопрос о выборе мощности трансформаторов решается одновременно с вопросом выбора мощности компенсирующих устройств напряжением до 1000 В:

(27)

где – мощность компенсирующих устройств, обеспечивающая выбор

оптимальной мощности цеховых трансформаторов;

– мощность компенсирующих устройств, выбираемая с целью

минимизации потерь мощности в трансформаторах цеховой подстанции и в распределительных сетях 10 кВ.

Ориентировочную мощность трансформаторов можно определить по формуле:

, (28)

где :

– количество трансформаторов;

– аварийный коэффициент перегрузки трансформаторов;

Принимаются два трансформатора типа ТНД-400/10 для которых:

, (29)

где:

– добавка до ближайшего целого числа в сторону большего;

β н – коэффициент загрузки трансформаторов в нормальном режиме;

β н =0,8 для двухтрансформаторных подстанциях при преобладании в цех потребителей II категории.

Определяется минимальное число трансформаторов цеховой подстанции:

(30)

где:

– дополнительное число трансформаторов, определяемое в зависимости от и

Определяется максимальная возможная реактивная мощность, передаваемая через трансформаторы из сети 10 кВ:

; (31)

Так как, то тогда принимается и компенсация реактивной мощности не нужна, т.е. ;

Определяем дополнительную мощность БСК для снижения потерь мощности в трансформаторах:

, (32)

где – расчётный коэффициент, определяемый в зависимости от коэффициентов и;

Коэффициент, учитывающий расположение энергосистемы и сменность предприятия;

– коэффициент, зависящий от мощности трансформаторов и длины питающей линии.

[ 1,109]

[ 1,107]

Следовательно, для цеховой подстанции:

Определяется коэффициент загрузки трансформаторов в нормальном и послеаварийном режимах:

Определяется необходимость установки БСК:

Конденсаторные батареи в цехе не устанавливаются.

Потери мощности в цеховых трансформаторах:

(35)

где:

Потери холостого хода, кВт;

Потери короткого замыкания, кВт.

(36)

где :

Ток холостого хода, %;

Напряжение короткого замыкания, %.

Активная мощность, потребляемая трансформатором:

Реактивная мощность, потребляемая трансформатором:

Полная мощность, потребляемая трансформатором:

(37)


7. Расчёт питающей линии 10 кВ.

Для выбора питающей линии 10 кВ необходимо знать ток короткого замыкания на шинах ГПП.

Составляется схема замещения

Составляется схема замещения рисунок 1.

Расстояние от ГПП до цеха l = 0,6 км; Рис. 1 Схема замещения

Расстояние от ГПП до подстанции энергосистемы L =12 км;

Мощность короткого замыкания на шинах 110 кВ подстанции энергосистемы = 1500 МВА.

Трансформаторы ГПП: ТМН – 10000/110;

Базисный ток:

(38)

Сопротивление системы:

О.е. (39)

где (. ) - номинальная мощность системы, МВА.

Сопротивление воздушной линии:

, (40)

где - удельное сопротивление воздушной линии, Ом/км;

- длина воздушной линии, км.

Принимается

Сопротивление трансформатора:

, (41)

Сопротивление кабельной линии:

, (42)

где - удельное сопротивление кабельной линии, Ом/км;

l - длина кабельной линии, км.

принимается Ом/км

l =0,6 км

Результирующее сопротивление:

(43)

Находим установившееся значение тока короткого замыкания:

Сечение линии определяется по экономической плотности тока j э :

(45)

где:

Расчетный ток кабельной линии в нормальном режиме, А;

Экономическая плотность тока, А/мм 2

Принимаем j э =1,4 А/мм 2 [ 7,305 ]

Расчетный ток кабельной линии в нормальном режиме:

(46)

Выбирается кабель 2А C Б-10-3×16, для него

Выбранное сечение проверяется:

По условию нагрева в нормальном режиме:

Определяется длительно – допустимый ток кабеля с учётом прокладки:

– число параллельных кабелей в кабельной линии.

– расчетный ток одного кабеля, А;

Определяем ток одного кабеля в послеаварийном режиме:

(47)

где – поправочный коэффициент на количество кабелей, проложенных в

одной траншее;

– поправочный коэффициент на температуру окружающей среды;

Проверяется выполнение условия нагрева в нормальном режиме:

69 А>10,2 А – условие выполняется.

2. По условию нагрева в послеаварийном режиме:

Определяется ток одного кабеля в послеаварийном режиме:

(48)

Определяется коэффициент аварийной перегрузки в зависимости от вида прокладки кабеля, коэффициента предварительной нагрузки и длительности максимума:

(49)

Определяется допустимый ток кабеля в послеаварийном режиме:

(50)

Проверяется выполнение условия нагрева в послеаварийном режиме:

93,15 А>20,4 А – условие выполняется.

Выбранное сечение проверяется по допустимой потере напряжения:

Δ U доп = 0,05·10 = 0,5кВ

=, (51)

где:

Удельное активное сопротивление кабеля, Ом/км;

Удельное реактивное сопротивление кабеля, Ом/км;

Длина кабельной линии, км.

условие выполняется.

Производится проверка сечения на термическую стойкость:

, (52)

где:

С – коэффициент изменения температуры;

– приведённое время КЗ, с;

16 < 69,1505 – это условие не выполняется.

Окончательно принимается стандартное сечение жил кабеля и кабель марки 2АСБ-10-3×50.


8. Конструктивное выполнение цеховой сети.

В зависимости от принятой схемы электроснабжения и условий окружающей среды цеховая электрическая сеть выполнена распределительными шинопроводами. Такие шинопроводы называют комплектными, так как они выполняются в виде отдельных секций, которые представляют собой четыре шины, заключённые в оболочку и скреплённые самой оболочкой.

Для выполнения прямых участков линий служат прямые секции, для поворотов – угловые, для присоединений – присоединительные. Соединение шин на месте монтажа производят болтовыми соединениями. На каждые 3 м секции шинопровода может быть установлено до 8-ми ответвительных коробок (по 4 с каждой стороны). В ответвительных коробках устанавливают автоматические выключатели или рубильники-предохранители. Крепление шинопроводов выполняют кронштейнами к колоннам на высоте 3,5 метров от уровня пола.

Спуск кабелей, проводов от шинопровода к распределительным шкафам или отдельным электроприемникам осуществляется по стенам в трубах. Участки кабелей питающих отдельные электроприемники проложены в трубах заделанных в чистовой пол на глубину 10 см.

В качестве распределительных пунктов используются шкафы с предохранителями, либо с автоматическими выключателями. Шкафы с предохранителями имеют на вводе рубильник. Шкафы с автоматическими выключателями выполнены с зажимами на вводе. Технические характеристики шкафов представлены в таблице 5.


Таблица 5 – Распределительные пункты

РП

Тип шкафа

Ном. ток шкафа

I нш , А

Количество отходящих линий

Ном. ток предохранителя, автомата I н , А

Тип предохранителя

Тип автоматического выключателя

РП1

ПР8501-011

Sirius 3RV10-42-4JA10

РП2

ПР8501-011

Sirius 3RV10-42-4JA10

РП3

ПР8501-007

Sirius 3RV10-42-4JA10

РП4

ШР11-73703 Р18-353

ПР-2

Sirius 3VL27-16-1AS33

РП5

ШР11-73703 Р18-353

Sirius 3VL27-16-1AS33

РП6

ПР8501-017

Sirius 3RV10-42-4JA10

РП7

ПР8501-011

ПР-2

Sirius 3VL27 16-1AS33


Заключение

В курсовом проекте была разработана схема электроснабжения ремонтно - механического цеха. Для этой цели были рассчитаны электрические нагрузки и сеть 0,4кВ, выбраны токоведущие части и цеховой трансформатор, осуществленапроверка кабелей питающих цеховую подстанцию на действие токов КЗ.

Питание отдельных электроприёмников осуществляется кабелями марки АВВГ и проводами марки АПВ.

В качестве защитных аппаратов применяются автоматические выключатели марки Sirius и предохранители марки ПР-2.

Данную схему электрической сети можно считать рациональной и экономичной.


Список использованных источников

  1. Фёдоров А. А., Старкова Л. Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий: Учеб. пособие для вузов. – М.: Энергоатомиздат, 1987. – 368 с.: ил.
  2. Справочник по проектированию электрических сетей и электрооборудования /под редакцией Барыбина Ю. Г. и др. – М.: Энергоатомиздат, 1991. – 464 с., ил.
  3. Справочник по проектированию электроснабжения /под редакцией Барыбина Ю. Г. и др. – М.: Энергоатомиздат, 1990. – 576 с.
  4. Справочник по электроснабжению промышленных предприятий /под общ. редакцией А.А. Федорова и Г.В. Сербиновского. В 2-х кн. Кн. 1. Проектно-расчётные сведения. – М.: Энергия, 1973. – 520 с., ил.
  5. Неклепаев Б. Н., Крючков И. П. Электрическая часть станций и подстанций. Справочные материалы для курсового и дипломного проектирования: Учеб. пособие для вузов. – 4-е изд., перераб. и доп. – М.: Энергоатомиздат, 1989. – 608 с., ил.
  6. Электротехнический справочник /под общ. ред. профессора МЭИ Герасимова В. Г. и др. – 8-е изд., испр. и доп. – М.: Издательство МЭИ, 1998. – 518 с.
  7. Справочник по проектированию электроэнергетических систем /под редакцией С.С. Рокотяна и И.М. Шапиро. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1985. – 352 с.
  8. Правила устройства электроустановок- М.: Госэнергонадзор, 2000
  9. http://electricvdome.ru/montaj-electroprivodki/raschet-secheniya-provoda kabelya.html
  10. http://www.electromonter.info/library/cable_current_1.html
  11. Каталог «Аппараты защиты. Автоматические выключатели»
  12. http://www.rus-trans.com/?ukey=product&productID=1145
  13. Методические указания по курсовому проектированию


Таблица 2 – Расчёт электрических нагрузок цеха

Продолжение таблицы 2


А также другие работы, которые могут Вас заинтересовать

37328. Технологический процесс изготовления детали “Форсунка” 133.5 KB
Применяемый на ОАО «КАДВИ» технологический процесс изготовления детали «Форсунка» является вполне современным. Весь технологический процесс механической обработки разработан исходя из получения заготовки методом литья, что определяет выбор технологических баз как для первой...
37329. Таможенная служба Российской Федерации 90 KB
Большинство законодательных и нормативных актов регулирующих таможенное дело были унифицированы на практике применяются основы таможенных законодательств государств участников СНГ. Созданы представительства таможенной службы России при таможенных службах Белоруссии и Казахстана и Киргизской республикой. Отменены таможенные ограничения во взаимной торговле нет больше необходимости содержать таможенную инфраструктуру ненужными стали почти девять тысяч километров внутренних границ 16 таможен 50 таможенных постов 64 автомобильных и 28...
37331. Аналитическое и табличное представление булевой функции 315.5 KB
Аналитическое и табличное представление булевой функции. Представление функции в ДНСФ. Минимизация функции по формулам склеивания. Минимизация функции методом Карно.
37332. КОНЦЕПЦИЯ МУЗЫКАЛЬНОГО ОБРАЗОВАНИЯ ШКОЛЬНИКОВ 452 KB
Как известно музыкальная культура школьника это интегративное свойство личности главнейшими показателями которого являются: музыкальная развитость любовь к музыкальному искусству эмоциональное к нему отношение потребность в различных образцах музыки музыкальная наблюдательность в значении которое придавал этому понятию Б. В процессе школьных музыкальных занятий учащиеся знакомятся с музыкальными произ ведениями анализируют общий характер настроение музыки значение различных элементов музыкальной речи в их...
37334. Расчёт потребного количества оборудования 263.95 KB
Степень занятости оборудования обработкой данной детали характеризуется коэффициентом занятости, на величину которого следует корректировать все расчеты для обеспечения их сопоставимости в базовом и проектируемом вариантах.
37335. ВВЕДЕНИЕ В ЭКСПЕРТНЫЕ СИСТЕМЫ 6.59 MB
Эти изменения стали возможными благодаря двум основным факторам: выделению в алгоритме программы некоторой универсальной части логического вывода и отделению ее от части зависящей от предметной области базы знанийрис. При этом производится преимущественно символьная обработка содержимого базы знаний. Экспертная система это компьютерная программа которая моделирует рассуждения человекаэксперта в некоторой определенной области и использует для этого базу знаний содержащую факты и правила об этой области и некоторую процедуру...
37336. Проблемы экономической безопасности России в условиях перехода к рынку 99 KB
Общее понятие экономической безопасности и характеристики основных ее показателей. Экономика России с точки зрения экономической безопасности. Пути обеспечения экономической безопасности России.

Выбор схемы электроснабжения неразрывно связан с вопросом напряжения, мощности, категории ЭП по надежности, удаленности ЭП .

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории.

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства в целях предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники третьей категории – все остальные электроприемники, не подпадающие под определения первой и второй категорий.

Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.


Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают одних суток.

Вопрос выбора схемы электроснабжения, уровня напряжения решается на основе технико-экономического сравнения вариантов.

Для питания промышленных предприятий применяют электросети напряжением 6, 10, 20, 35, 110 и 220 кВ.

В питающих и распределительных сетях средних предприятий принимается напряжение 6–10 кВ. Напряжение 380/220 В является основным в электроустановках до 1000 В. Внедрение напряжения 660 В экономически эффективно и рекомендуется применять в первую очередь для вновь строящихся промышленных объектов .

Напряжение 42 В (36 и 24) применяется в помещениях с повышенной опасностью и особо опасных, для стационарного местного освещения и ручных переносных ламп.

Напряжение 12 В применяется только при особо неблагоприятных условиях в отношении опасности поражения электрическим током, например при работе в котлах или других металлических резервуарах с использованием ручных переносных светильников.

Применяются две основные схемы распределения электроэнергии – радиальная и магистральная в зависимости от числа и взаимного расположения цеховых подстанций или других ЭП по отношению к питающему их пункту.

Обе схемы обеспечивают требуемую надежность электроснабжения ЭП любой категории.

Радиальные схемы распределения применяются главным образом в тех случаях, когда нагрузки рассредоточены от центра питания. Одноступенчатые радиальные схемы применяются для питания крупных сосредоточенных нагрузок (насосные, компрессорные, преобразовательные агрегаты, электропечи и т. п.) непосредственно от центра питания, а также для питания цеховых подстанций. Двухступенчатые радиальные схемы используют для питания небольших цеховых подстанций и электроприемников ВН в целях разгрузки основных энергетических центров (рис. З.1). На промежуточных распредпунктах устанавливается вся коммутационная аппаратура. Следует избегать применения многоступенчатых схем для внутрицехового электроснабжения.

Распределительные пункты и подстанции с электроприемниками I и II категорий питаются, как правило, по двум радиальным линиям, которые работают раздельно, каждая на свою секцию, при отключении одной из них нагрузка автоматически воспринимается другой секцией.

Рис. 3.1. Фрагмент радиальной схемы распределения электроэнергии

Магистральные схемы распределения электроэнергии следует применять при распределенных нагрузках, когда потребителей много и радиальные схемы экономически нецелесообразны. Основные преимущества: позволяют лучше загрузить при нормальном режиме кабели, сэкономить число шкафов на распределительном пункте, сократить длину магистрали. К недостаткам магистральных схем относятся усложнение схем коммутации, одновременное отключение ЭП нескольких производственных участков или цехов, питающихся от данной магистрали при ее повреждении. Для питания ВП I и II категорий должны применяться схемы с двумя и более параллельными сквозными магистралями (рис. 3.2).

Питание ЭП в сетях напряжением до 1000 В II и III категорий по надежности электроснабжения рекомендуется осуществлять от однотрансформаторных комплектных трансформаторных подстанций (КТП).

Выбор двухтрансформаторных КТП должен быть обоснован. Наиболее целесообразны и экономичны для внутрицехового электроснабжения в сетях до 1 кВ магистральные схемы блоков трансформатор–магистраль без распределительных устройств на подстанции с применением комплектных шинопроводов.

Радиальные схемы внутрицеховых питающих сетей применяют, когда невозможно выполнение магистральных схем по условиям территориального размещения электрических нагрузок, а также по условиям среды.

Для электроснабжения цеховых потребителей в практике проектирования редко применяют радиальные или магистральные схемы в чистом виде. Наибольшее распространение находят так называемые смешанные схемы электрических сетей, сочетающие в себе элементы как радиальных, так и магистральных схем.

Рис. 3.2. Схема с двойными сквозными магистралями

Схемы электроснабжения и все электроустановки переменного и постоянного тока предприятия напряжением до 1 кВ и выше должны удовлетворять общим требования к их заземлению и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции .

Электроустановки в отношении мер электробезопасности разделяются:

– на электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью ;

– электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

– электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

– электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

Для электроустановок напряжением до 1 кВ приняты нижеследующие обозначения. Система TN – система, в которой нейтраль источника питания глухозаземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников (рис. 3.3–3.7).

Рис. 3.3. Система TN-C – система TN , в которой нулевой защитный

и нулевой рабочий проводники совмещены в одном проводнике

на всем ее протяжении

Первая буква – состояние нейтрали источника питания относительно

T – заземленная нейтраль;

I – изолированная нейтраль.

Вторая буква – состояние открытых проводящих частей относительно земли:

T – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N ) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S – нулевой рабочий (N ) и нулевой защитный (PE ) проводники разделены;

C – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN -проводник);

N – нулевой рабочий (нейтральный) проводник;

PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN – совмещенный нулевой защитный и нулевой рабочий проводник.

Нулевой рабочий (нейтральный) проводник (N ) – проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

Совмещенный нулевой защитный и нулевой рабочий (PEN ) проводник – проводник в электроустановках напряжением до 1 кВ, совмещающий функции нулевого защитного и нулевого рабочего проводников.

Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

– основная изоляция токоведущих частей;

– ограждения и оболочки;

– установка барьеров;

– размещение вне зоны досягаемости;

– применение сверхнизкого (малого) напряжения.

Рис. 3.4. Система TN-S – система TN , в которой нулевой защитный

и нулевой рабочий проводники разделены на всем ее протяжении

Рис. 3.5. Система TN-C-S – система TN , в которой функции нулевого

защитного и нулевого рабочего проводников совмещены в одном

проводнике в какой-то ее части, начиная от источника питания

Рис. 3.6. Система TT – система, в которой нейтраль источника питания

глухо заземлена, а открытые проводящие части электроустановки

заземлены при помощи заземляющего устройства, электрически

независимого от глухозаземленной нейтрали источника

Рис. 3.7. Система IT –система, в которой нейтраль источника питания

изолирована от земли или заземлена через приборы или устройства,

имеющие большое сопротивление, а открытые проводящие части

электроустановки заземлены

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ при наличии требований других глав ПУЭ следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

– защитное заземление;

– автоматическое отключение питания;

– уравнивание потенциалов;

– выравнивание потенциалов;

– двойная или усиленная изоляция;

– сверхнизкое (малое) напряжение;

– защитное электрическое разделение цепей;

– изолирующие (непроводящие) помещения, зоны, площадки.

Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN .

Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с ПУЭ.

Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система TT ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО.

При этом должно быть соблюдено условие

R a I a ≤ 50 B,

где I a – ток срабатывания защитного устройства;

R a – суммарное сопротивление заземлителя и заземляющего проводника наиболее удаленного электроприемника при применении УЗО для защиты нескольких электроприемников.

При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN- проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В прил. 3 приведены схемы электроснабжения отдельных зданий, а в прил. 4 – графические и буквенные обозначения в электрических схемах.

 


Читайте:



Срок ремонта по гарантии

Срок ремонта по гарантии

Поломка нового телефона - случай неприятный, но с данной техникой не редкий. Возникает актуальный вопрос, что делать в такой ситуации. Особенно...

Статистический контроль процессов

Статистический контроль процессов

Статистический контроль качества (понятие из японского стандарта) – это применение статистических принципов, методов и приемов на всех стадиях...

Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

Там на неведомых дорожках. Если вы не так уж боитесь Кащея,Или Бармалея и Бабу-Ягу,Приходите в гости к нам поскорее,Там, где зеленый дуб на...

Менеджер по персоналу: должностная инструкция, требования и обязанности

Менеджер по персоналу: должностная инструкция, требования и обязанности

Предлагаем Вашему вниманию типовой пример должностной инструкции менеджера по персоналу, образец 2019/2020 года. На данную должность может быть...

feed-image RSS