Главная - Оборудование
Атомные электростанции. Ядерный реактор: история создания и принцип действия Для чего нужен ядерный реактор

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.


как работает реакторГрадирни АЭС
Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция - это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор - это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово «ядерный». Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.

История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали «Чикагской поленницей».

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский - всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

схема работы ядерного реактораСхема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он — кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы.

Ядерное топливоЯдерное топливо

Критическая масса - это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

Вам понравится: Математические штучки-фокусы для студентов-гуманитариев и не очень (Часть 1)
В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике - обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

blog/kak-rabotaet-yadernyj-reaktor/

Значение атомной энергетики в современном мире

Атомная энергетика за последние несколько десятилетий сделала огромный шаг вперед, став одним из важнейших источников электроэнергии для многих стран. В то же время следует помнить, что за развитием данной отрасли народного хозяйства стоят огромные усилия десятков тысяч ученых, инженеров и простых рабочих, делающих все для того, чтобы «мирный атом» не превратился в реальную угрозу для миллионов людей. Настоящим стержнем любой атомной электростанции является ядерный реактор.

История создания ядерного реактора

Первое подобное устройство было построено в самый разгар второй мировой войны в США известным ученым и инженером Э. Ферми. Из-за своего необычного вида, напоминавшего стопку сложенных друг на друга графитовых блоков, этот ядерный реактор получил название «Чикагская стопка». Стоит отметить, что работало данное устройство на уране, который помещался как раз между блоками.

Создание ядерного реактора в Советском Союзе

В нашей стране ядерной тематике также уделяли повышенное внимание. Несмотря на то, что основные усилия ученых были сконцентрированы на военном применении атома, они активно использовали полученные результаты и в мирных целях. Первый ядерный реактор под кодовым обозначением Ф-1 был построен группой ученых под руководством знаменитого физика И. Курчатова в конце декабря 1946 года. Значительным его недостатком было отсутствие какой бы то ни было системы охлаждения, поэтому мощность выделяемой им энергии была крайне незначительна. В то же время советские исследователи довели до конца начатые ими работы, результатом чего стало открытие спустя всего восемь лет первой в мире электростанции на ядерном топливе в городе Обнинске.

Принцип действия реактора

Ядерный реактор представляет собой крайне сложное и опасное техническое устройство. Его принцип действия основан на том, что при распаде урана происходит выброс нескольких нейтронов, которые, в свою очередь, выбивают элементарные частицы из соседних атомов урана. В результате этой цепной реакции выделяется значительное количество энергии в виде тепла и гамма-лучей. В то же время следует учитывать тот факт, что если эту реакцию никак не контролировать, то деление атомов урана в максимально короткие сроки может привести к мощному взрыву с нежелательными последствиями.

Для того чтобы реакция протекала в строго очерченных рамках, огромное значение имеет устройство ядерного реактора. В настоящее время каждое подобное сооружение представляет собой своеобразный котел, через который протекает теплоноситель. В этом качестве обычно используется вода, однако существуют АЭС, в которых применяются жидкий графит или тяжелая вода. Современный ядерный реактор невозможно представить себе без сотен специальных кассет шестигранной формы. В них находятся тепловыделяющие элементы, по каналам которых и протекают теплоносители. Данная кассета покрыта специальным слоем, который способен отражать нейтроны и замедлять тем самым цепную реакцию

Ядерный реактор и его защита

Он имеет несколько уровней защиты. Помимо собственно корпуса, сверху его покрывает специальная теплоизоляция и биологическая защита. С инженерной точки зрения данное сооружение представляет собой мощный железобетонный бункер, двери в который закрываются максимально герметично.

Ядерный реактор

Ядерный реактор - это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде в сентябре 1945 года. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Корпус реактора подвержен износу (особенно под действием ионизирующего излучения). Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·10 16 актов деления в 1 сек.

История

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером стал Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» - первого реактора. Поздней весной 1940 года один из учёных группы - Хартек - провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели. В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение. Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование.

Цепная реакция деления ядер (кратко - цепная реакция) была впервые осуществлена в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова. Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (доли ватта, редко - единицы ватт). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония, а 27 июня 1954 года вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем;
  • Отражатель нейтронов, окружающий активную зону;
  • Теплоноситель;
  • Система регулирования цепной реакции, в том числе аварийная защита;
  • Радиационная защита;
  • Система дистанционного управления.

Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона 135Xe. Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на:

  • Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт. В отдельную группу выделяют:
    • Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.
  • Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт.
  • Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным относят реакторы, использующиеся для опреснения морской воды.

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)
  • Реактор на промежуточных нейтронах
  • Реактор со смешанным спектром

По размещению топлива

  • Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

  • изотопы урана 235, 238, 233 (235U, 238U, 233U)
  • изотоп плутония 239 (239Pu), также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)
  • изотоп тория 232 (232Th) (посредством преобразования в 233U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UO2 (диоксид урана)
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • H2O (Водо-водяной реактор)
  • Газ, (Графито-газовый реактор)
  • Реактор с органическим теплоносителем
  • Реактор с жидкометаллическим теплоносителем
  • Реактор на расплавах солей
  • Реактор с твердым теплоносителем

По роду замедлителя

  • С (Графито-газовый реактор, Графито-водный реактор)
  • H2O (Легководный реактор, Водо-водяной реактор, ВВЭР)
  • D2O (Тяжеловодный ядерный реактор, CANDU)
  • Be, BeO
  • Гидриды металлов
  • Без замедлителя (Реактор на быстрых нейтронах)

По конструкции

  • Корпусные реакторы
  • Канальные реакторы

По способу генерации пара

  • Реактор с внешним парогенератором (Водо-водяной реактор, ВВЭР)
  • Кипящий реактор

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном В, Cd и некоторые др.) и/или раствор борной кислоты, в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты.

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью, является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления, которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

В 1948 г. по предложению И. В. Курчатова начались первые работы по практическому применению энергии атома для получения электроэнергии. Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в СССР, в городе Обнинск, расположенном в Калужской области.

За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания). Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Самый большой в мире парк АЭС принадлежит США. В эксплуатации находятся 104 энергоблока суммарной мощностью около 100 ГВт. Они обеспечивают производство 20% электроэнергии.

Мировым лидером по использованию АЭС является Франция. Ее 59 атомных станций вырабатывают около 80% всей электроэнергии. При этом их суммарная мощность меньше, чем у американских - около 70 ГВт.

Среди лидеров по количеству ядерных реакторов в мире можно встретить и две азиатские страны - Японию и Южную Корею.

За годы развития атомной энергетики несколько раз случались серьезные аварии, в первую очередь это случаи на американской АЭС Три Майл Айленд, украинской ЧАЭС и японской Фукусима-1.

Белорусские власти планируют построить АЭС в Гродненской области, в нескольких десятках километров от границы с Литвой. Станция будет включать в себя два блока общей мощностью 2,4 тысячи мегаватт. Первый, как ожидается, будет введен в действие в 2016, второй - в 2018 году.

Ссылки

Ядерный реактор

Ядерным реактором называют реактор, в котором осуществляется управляемая цепная ядерная реакция деления. В настоящее время существует очень много различных типов ядерных реакторов разной мощности, которые различаются по величине энергии используемых нейтронов, по типу используемого ядерного топлива, по структуре активной зоны реактора, по типу замедлителя, теплоносителя и т.д. Первый ядерный реактор построен в декабре 1942 года в США под руководством Э. Ферми. В Европе первым ядерным реактором стала установка Ф-1. Она была запущена 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

Реакторы на медленных нейтронах

Реакторы, работающие на тепловых нейтронах (их скорости 2·10 3 м/с), состоят из следующих основных частей:

А) делящегося вещества , в качестве которого используют изотопы урана (\(~^{233}_{92}U\) ,\(~^{235}_{92}U\)), тория (\(~^{232}_{90}Th\)) или плутония (\(~^{239}_{94}Pu\) , \(~^{240}_{94}Pu\) , \(~^{241}_{94}Pu\)); б) замедлителя нейтронов , которым служит графит, тяжелая или обычная вода; в) отражателя нейтронов , в качестве которого обычно используют те же вещества, что и для замедления нейтронов; г) теплоносителя , предназначенного для отвода теплоты из активной зоны реактора. В качестве теплоносителя используют воду, жидкие металлы, некоторые органические жидкости; д) регулирующих стержней ; е) системы дозиметрического контроля и биологической защиты окружающей среды от потоков нейтронов и γ -излучения, возникающих в активной зоне реактора.

Уран входит в состав ядерного топлива в виде тугоплавких соединений. Среди них особенно популярна двуокись урана U2O, химически инертная и выдерживающая температуры до 2800 °C. Из этой керамики изготавливают небольшие таблетки диаметром в несколько сантиметров. Получившееся ядерное топливо упаковывают в так называемые тепловыделяющие элементы (ТВЭЛы), устройство одного из которых показано на рисунке 2. Циркониевая оболочка служит для изоляции урана и радиоактивных продуктов цепной реакции от химического контакта с внешней средой, прежде всего, с теплоносителем. ТВЭЛ должен хорошо проводить тепло, передавая его от ядерного топлива к теплоносителю.

Рис. 2. Тепловыделяющие элементы (ТВЭЛы)

Если при реакции нейтронов будет образовываться меньше, чем нужно, то цепная реакция рано или поздно прекратится. В том случае, если нейтронов будет образовываться больше, чем нужно, количество ядер урана, вовлекаемых в реакцию деления, будет лавинообразно нарастать. Если не увеличить скорость поглощения нейтронов, то управляемая реакция может перерасти в ядерный взрыв.

Изменять скорость поглощения нейтронов можно при помощи управляющих стержней, изготовленных из кадмия, гафния, бора или других веществ (рис. 3).

Теплота, выделяемая в ядерном реакторе при цепной реакции деления ядер, уносится теплоносителем - водой, находящейся под давлением 10 МПа, вследствие чего вода нагревается до 270 °С не закипая. Далее вода поступает в теплообменник, где отдает значительную часть своей внутренней энергии воде второго контура и с помощью насосов вновь попадает в активную зону реактора. Вода второго контура в теплообменнике превращается в пар, который поступает в паровую турбину, приводящую в действие электрогенератор. Второй контур, как и первый, является замкнутым. После турбины пар попадает в конденсатор, где змеевик охлаждается холодной проточной водой. Здесь пар превращается в воду и с помощью насосов вновь попадает в теплообменник. Направление движения воды в контурах таково, что в теплообменнике потоки воды в обоих контурах движутся навстречу друг другу. Раздельные контуры необходимы и потому, что в первом контуре вода, проходя через активную зону реактора, становится радиоактивной. Во втором же контуре пар и вода практически нерадиоактивны.

Ссылки

Реакторы на быстрых нейтронах

Если в качестве ядерного горючего используется уран, в котором значительно увеличено содержание изотопа \(~^{235}_{92}U\) , то ядерный реактор может работать без использования замедлителя на быстрых нейтронах, освобождающихся при делении ядер. В таком реакторе более 1/3 нейтронов, освобождающихся при цепной реакции, может поглощаться ядрами изотопа урана-238, вследствие чего возникают ядра изотопа урана-239.

Ядра нового изотопа бета-радиоактивны. В результате бета-распада образуется ядро девяносто третьего элемента таблицы Менделеева - нептуния. Ядро нептуния, в свою очередь, путем бета-распада превращается в ядро девяносто четвертого элемента - плутония:

\(~\begin{matrix} & \nearrow \beta^- & \nearrow \beta^- & \\ ^{238}_{92}U + \ ^1_0n \to & ^{239}_{92}U \to \ & ^{239}_{93}Np \to \ & ^{239}_{94}Pu \end{matrix}\) .

Таким образом, ядро изотопа урана-238 после поглощения нейтрона самопроизвольно превращается в ядро изотопа плутония \(~^{239}_{94}Pu\) .

Плутоний-239 по способности к взаимодействию с нейтронами очень похож на изотоп урана-235. При поглощении нейтрона ядро плутония делится и испускает 3 нейтрона, способных поддерживать развитие цепной реакции. Следовательно, реактор на быстрых нейтронах является не только установкой для осуществления цепной реакции деления ядер изотопа урана-235, но и одновременно установкой для получения из широко распространенного и относительно дешевого изотопа урана-238 нового ядерного горючего, плутония-239. На 1 кг израсходованного урана-235 в реакторе на быстрых нейтронах можно получить более килограмма плутония-239, который может быть, в свою очередь, использован для осуществления цепной реакции и получения новой порции плутония из урана.

Таким образом, ядерный реактор на быстрых нейтронах может одновременно служить энергетической установкой и реактором - размножителем ядерного горючего, позволяющим в конечном счете использовать для получения энергии не только редкий изотоп урана-235, но и изотоп урана-238, которого в природе в 140 раз больше.

Ссылки

  1. Атомная станция с реакторами на быстрых нейтронах (БН 600)
  2. Баллада о быстрых нейтронах: Уникальный реактор Белоярской АЭС

Назначение ядерных реакторов

По своему назначению ядерные реакторы делятся на следующие типы:

А) исследовательские - с их помощью получают мощные пучки нейтронов для научных целей; б) энергетические - предназначены для получения электрической энергии в промышленных масштабах; в) теплофикационные - в них получают теплоту для нужд промышленности и теплофикации; г) воспроизводящие - служат для получения из урана \(~^{238}_{92}U\) и тория \(~^{232}_{90}Th\) делящихся материалов плутония \(~^{239}_{94}Pu\) и урана \(~^{233}_{92}U\); д) транспортные - их используют в двигательных установках кораблей и подводных лодок; е) реакторы для промышленного получения изотопов различных химических элементов, обладающих искусственной радиоактивностью.

Ссылки

Преимущества АЭС

АЭС имеют ряд преимуществ по сравнению с тепловыми электростанциями, работающими на органическом топливе:

  • небольшой объём используемого топлива и возможность его повторного использования после переработки: 1 кг природного урана заменяет 20 т угля. Для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля;
  • хотя при работе АЭС в атмосферу и выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит ещё большее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле;
  • с одного реактора АЭС может быть получена большая мощность (1000-1600 МВт на энергоблок).

Экологические проблемы

У современных атомных электростанций коэффициент полезного действия приблизительно равен 30%. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уносится водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем. Очень важная задача состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Однако ядерной энергетике, как и многим другим отраслям промышленности, присущи вредные и опасные факторы воздействия на окружающую среду. Наибольшую потенциальную опасность представляет радиоактивное загрязнение.

Опыт эксплуатации АЭС во всем мире показывает, что биосфера надежно защищена от радиационного воздействия в нормальном режиме эксплуатации предприятий ядерной энергетики. После аварии на Чернобыльской АЭС (1986 г.) проблема безопасности ядерной энергетики встала с особенной остротой. Взрыв четвертого реактора на Чернобыльской АЭС показал, что риск разрушения активной зоны реактора из-за ошибок персонала и просчетов в конструкции остается реальностью. Необходимо принимать самые строгие меры для снижения этого риска.

Сложные проблемы возникают с захоронением радиоактивных отходов и демонтажем отслуживших свой срок АЭС. Наиболее известными среди продуктов распада являются стронций и цезий. Блоки отработанного ядерного топлива необходимо охлаждать. Дело в том, что при радиоактивном распаде выделяется так много тепла, что блоки могут расплавиться. Кроме того, блоки могут излучать новые радиоактивные элементы. Эти элементы как источники радиоактивности применяются в медицине, промышленности и научных исследованиях. Все прочие ядерные отходы необходимо изолировать и хранить в течение многих лет. Лишь через несколько сотен лет радиоактивность отходов снизится и станет сравнимой с естественным фоном. Отходы помещают в специальные контейнеры, которые закапывают в выработанные шахты или расселины в скалах.

 


Читайте:



Реквизиты ооо Банковские реквизиты ООО

Реквизиты ооо Банковские реквизиты ООО

Регистрационные и банковские реквизиты ООО В своей повседневной деятельности руководители и ответственные лица обществ с ограниченной...

Закон о садоводческих товариществах: что меняется и устоят ли дома

Закон о садоводческих товариществах: что меняется и устоят ли дома

Садоводческие товарищества — это некоммерческие организации Российской Федерации, которые создаются на добровольной основе. Их основная цель —...

Задачи по теории вероятностей с решениями

Задачи по теории вероятностей с решениями

Этот раздел содержит первую часть задач по теории вероятностей, которые достаточно просты для того, чтобы их могли поместить не только в вариант...

Курсовая работа моделирование и анализ информационной системы строительной организации ооо "м

Курсовая работа моделирование и анализ информационной системы строительной организации ооо

Для проведения количественного анализа диаграмм перечислим показатели модели: Количество блоков на диаграмме – N ; Уровень декомпозиции диаграммы...

feed-image RSS