Главная - Forex
Геотермальная энергия принцип работы. Геотермальные электростанции (ГеоТЭС)

Ресурсы нашей планеты не бесконечны. Используя в качестве главного источника энергии природные углеводороды, человечество рискует в один прекрасный момент обнаружить, что они исчерпаны, и прийти к глобальному кризису потребления привычных благ. XX век стал временем масштабных сдвигов в области энергетики. Ученые и экономисты в разных странах всерьез задумались о новых способах получения и возобновляемых источниках электричества и тепла. Наибольший прогресс был достигнут в области ядерных исследований, но появились интересные идеи, касающиеся полезного использования других природных явлений. Ученые давно узнали, что планета наша внутри горяча. Для получения пользы от глубинного тепла созданы геотермальные электростанции. В мире пока их немного, но, возможно, со временем станет больше. Каковы их перспективы, не опасны ли они и можно ли рассчитывать на высокую долю ГТЭС в общем объеме добываемой энергии?

Первые шаги

В дерзновенных поисках новых источников энергии ученые рассматривали множество вариантов. Изучались возможности освоения энергии приливов и отливов Мирового океана, преобразования солнечного света. Вспомнили и о старинных ветряных мельницах, снабдив их вместо каменных жерновов генераторами. Большой интерес представляют и геотермальные электростанции, способные вырабатывать энергию из тепла нижних раскаленных слоев земной коры.

В середине шестидесятых годов СССР не испытывал ресурсного дефицита, но энерговооруженность народного хозяйства, тем не менее, оставляла желать лучшего. Причина отставания от промышленно развитых стран в этой области состояла не в недостатке угля, нефти или мазута. Огромные расстояния от Бреста до Сахалина затрудняли доставку энергии, она становилась очень дорогой. Советские ученые и инженеры предлагали самые смелые решения этой задачи, и некоторые из них воплощались в жизнь.

В 1966 году на Камчатке заработала Паужетская геотермальная электростанция. Ее мощность составила довольно скромную цифру в 5 мегаватт, но этого вполне хватало для снабжения близлежащих населенных пунктов (поселков Озерновского, Шумного, Паужетки, сел Усть-Большерецкого р-на) и промышленных предприятий, главным образом рыбоконсервных заводов. Станция была экспериментальной, и сегодня можно смело утверждать, что опыт удался. В качестве источников тепла используются вулканы Камбальный и Кошелев. Преобразование осуществляли две установки турбогенераторного типа, первоначально по 2,5 МВт. Через четверть века установленную мощность удалось поднять до 11 МВт. Старое оборудование полностью исчерпало свой ресурс только в 2009 году, после чего была произведена полная реконструкция, включавшая и прокладку дополнительных трубопроводов теплоносителя. Опыт успешной эксплуатации побудил энергетиков строить и другие геотермальные электростанции. В России их сегодня пять.

Как работает

Исходные данные: в глубине земной коры есть тепло. Его нужно преобразовать в энергию, например, электрическую. Как это сделать? Принцип работы геотермальной электростанции достаточно прост. Под землю закачивается вода через специальную скважину, называемую входной или нагнетающей (по-английски injection, то есть "впрыск"). Для того чтобы определить подходящую глубину, требуется геологическое исследование. Вблизи нагретых магмой слоев, в конечном счете, должен образоваться подземный проточный бассейн, играющий роль теплообменника. Вода сильно нагревается и превращается в пар, который через другую скважину, (рабочую или эксплуатационную) подается на лопасти турбины, сопряженной с осью генератора. На первый взгляд, все выглядит очень просто, но на практике геотермальные электростанции устроены куда сложнее и имеют различные особенности конструкции, обусловленные эксплуатационными проблемами.

Достоинства геотермальной энергетики

Этот способ получения энергии имеет неоспоримые плюсы. Во-первых, геотермальные электростанции не требуют топлива, запасы которого лимитированы. Во-вторых, эксплуатационные расходы сведены к издержкам на технически регламентированные работы по плановой замене комплектующих изделий и обслуживанию технологического процесса. Срок окупаемости вложений составляет несколько лет. В-третьих, такие станции условно можно считать экологически чистыми. Есть, правда, в этом пункте и острые моменты, но о них позже. В-четвертых, дополнительной энергии для технологических нужд не требуется, насосы и другие приемники энергии запитываются от добываемых ресурсов. В-пятых, установка, помимо работы по прямому назначению, может производить опреснение воды Мирового океана, на берегу которого обычно строятся геотермальные электростанции. Плюсы и минусы присутствуют, однако, и в этом случае.

Недостатки

На фотографиях все выглядит просто чудесно. Корпуса и установки эстетичны, над ними не поднимаются клубы черного дыма, только белый пар. Однако не все так прекрасно, как кажется. Если геотермальные электростанции расположены поблизости населенных пунктов, жителям окрестностей досаждает производимый предприятиями шум. Но это лишь видимая (вернее, слышимая) часть проблемы. При бурении глубоких скважин никогда нельзя предвидеть, что именно из них пойдет. Это может быть токсичный газ, минеральные воды (не всегда лечебные) или даже нефть. Разумеется, если геологи наткнутся на пласт полезных ископаемых, то это даже хорошо, но такое открытие вполне может полностью изменить привычный уклад жизни местных жителей, поэтому разрешение на проведение даже исследовательских работ региональные власти дают крайне неохотно. Вообще выбрать место для ГТЭС довольно сложно, ведь в результате ее эксплуатации вполне может возникнуть провал грунта. Условия внутри земной коры меняются, и если источник тепла утратит со временем свой тепловой потенциал, затраты на строительство окажутся напрасными.

Как выбрать место

Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.

Следует учитывать, что наличие геологически активных зон - непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.

Следующий важный момент - наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.

Камчатка

Россия богата всеми видами природных ресурсов, но это не означает, что в бережном отношении к ним нет нужды. Геотермальные электростанции в России строят, причем в последние десятилетия все более активно. Они частично обеспечивают потребность энергообеспечения отдаленных районов Камчатки и Курил. Помимо уже упомянутой Паужетской ГТЭС, на Камчатке в эксплуатацию введена 12-мегаваттная Верхне-Мутновская ГТЭС (1999). Намного мощней ее Мутновская геотермальная электростанция (80 МВт), расположенная возле того же вулкана. Вместе они обеспечивают более трети объема энергии, потребляемой регионом.

Курилы

Сахалинская область также пригодна для строительства геотермальных энергопроизводящих предприятий. Здесь их два: Менделеевская и Океанская ГТЭС.

Менделеевская ГТЭС предназначена для решения проблемы энергоснабжения острова Кунашир, на котором расположен поселок городского типа Южно-Курильск. Название свое станция получила не в честь великого русского химика: так называется островной вулкан. Строительство началось в 1993-м, через девять лет предприятие введено в строй. Первоначально мощность составляла 1,8 МВт, но после модернизации и запуска следующих двух очередей достигла пяти.

На Курилах, на острове Итуруп, в том же 1993 году была заложена еще одна ГТЭС, получившая название «Океанская». Заработала она в 2006-м, через год вышла на проектную мощность в 2,5 МВт.

Мировой опыт

Русские ученые и инженеры стали пионерами во многих отраслях прикладной науки, но геотермальные электростанции изобрели все же за рубежом. Первая в мире ГТЭС (250 кВт) была итальянской, начала свою работу в 1904 году, ее турбина вращалась паром, выходящим из природного источника. До этого подобные явления использовались только в лечебно-курортных целях.

В настоящее время позиции России в области использования геотермального тепла также нельзя назвать передовыми: ничтожный процент вырабатываемого в стране электричества приходится на пять станций. Самое большое значение эти альтернативные источники имеют для экономики Филиппин: на них приходится один киловатт из каждых пяти, производимых в республике. Продвинулись вперед и другие страны, в числе которых Мексика, Индонезия и США.

На просторах СНГ

На уровень развития геотермальной энергетики влияет в большей степени не технологическая «продвинутость» той или иной страны, а осознание ее руководством насущной необходимости в альтернативных источниках. Есть, конечно, и «ноу-хау», касающиеся способов борьбы с накипью в теплообменниках, способов управления генераторами и прочей электрической частью системы, но вся эта методология специалистам давно известна. Большую заинтересованность в строительстве ГеоТЭС в последние годы проявляют многие постсоветские республики. В Таджикистане изучают районы, являющие собой геотермальное богатство страны, идет строительство 25-мегаваттной станции «Джермахпюр» в Армении (Сюникская область), соответствующие исследования ведутся в Казахстане. Горячие источники Брестской области стали предметом интереса белорусских геологов: они начали пробные бурения двухкилометровой скважины Вычулковская. В общем, за геоэнергетикой, скорее всего, есть будущее.

Впрочем, и с теплом Земли обращаться нужно бережно. Ограничен и этот природный ресурс.

Геотермальные ТЭС на месторождениях пароводяной смеси или геотермальных рассолов с конденсационными турбинами и одно- или многократным расширением геотермального флюида.

Если на месторождениях пароводяной смеси температура отсепарированной воды достаточно высока (выше 100 °С), то можно путем расширения [сбросом давления в расширителе 9 (рис.) получить дополнительный пар, который направляется на промежуточный вход турбины.

Это позволяет получить дополнительную работу и, тем самым, повысить КПД энергоустановки. Таких каскадов теоретически может быть несколько. На практике, однако, возможность применения таких схем ограничивается солеотложением в элементах оборудования в результате повышения концентрации солей выше предельной растворимости. На месторождениях пароводяной смеси раньше всего образуются отложения кремневой кислоты, растворимость которой быстро уменьшается при снижении температуры. На месторождениях геотермальных рассолов, добываемых из карбонатных коллекторов (Северный Кавказ) при расширении рассолов выделяется растворенный СО2 , что приводит к нарушению углекислотного равновесия и образованию отложений кальцита, магнезита и т.п. Поэтому применение схем с расширителями возможно лишь при отсутствии массивных солеотложений или при использовании регулярной очистки оборудования.
Расширители являются сравнительно дешевыми объемными аппаратам и, поэтому их применение практически не увеличивает капиталовложения, остающиеся на уровне 1000 долл/кВт.

Рис . 3. С хе ма Гео ТЭС с конд енс ационно й т урб ино й и расши ре -

нием геот ерма льно го флю ида:


1 — подъемная скважина; 2 — сепаратор; 3 — конденсационная турбина; 4 — конденсатор; 5 — градирня; 6 — циркуляционный насос; 7 — конденсатный насос; 8 — нагнетательная скважина; 9 — расширитель.

Геотермальные ТЭС с использованием низкокипящих чистых или смесевых рабочих тел.

Во избежание солеотложений, возникающих при упаривании геотермальных рассолов в схемах с расширителями, применяется схема с использованием низкокипящих рабочих тел.

Геотермальный рассол из подъемной скважины 1 поступает в теплообменник-парогенератор 2 (который обычно выполняется в виде двух кожухотрубных аппаратов ― испарителя и подогревателя (экономайзера)). После охлаждения до предельной температуры, определяемой условием отсутствия солеотложений, рассол возвращается обратно в пласт по нагнетательной скважине 3 . В связи с высокой стоимостью скважин, для увеличения расхода геотермального рассола иногда применяются погружные насосы, размещаемые на глубине до 200 м в подъемной скважине, а для обратной закачки практически всегда используется нагнетательный насос перед реинжекционной скважиной3 . Расход электроэнергии на привод этих насосов иногда достигает 20% от выработки электроэнергии.


Рис . 4 . Схем а Гео ТЭС с испо льзование м низ ко кипящ и х ра боч их тел :

1 по дъе мна я скважин а; 2 — теплообм е нник- паро генер ато р; 3 — нагнетательна я с кважин а; 4 — тур бин а ; 5 — к о нде нсато р; 6 циркуляционный нас ос

В качестве рабочих тел таких ГеоТЭС используются хладагенты (углеводороды: пропан, бутан, фреоны, в последнее время рассматривается возможность применения водоаммиачной смеси). Жидкое рабочее тело подогревается и испаряется в парогенераторе 2 и подается на вход турбины 4 . Расширение пара низкокипящих рабочих тел в турбине происходит (в отличие от водяного пара) в области сухого пара, что связано с аномальным видом правой ветви их кривых насыщения в T ,s -диаграмме—энтропия уменьшается при снижении температуры, поэтому из турбины выходит сухой пар. Если его температура значительно выше температуры конденсации, определяемой обычно температурой воздуха, целесообразно возвратить избыточное тепло в цикл, для чего используется непоказанный на схеме рекуперативный теплообменник, устанавливаемый перед конденсатором 5 , который обычно является воздухоохлаждаемым из-за дефицита охлаждающей воды. Сконденсированное рабочее тело циркуляционным насосом 6 подается на вход парогенератора (при наличии рекуператора—через него).
Первая в мире геотермальная энергоустановка по такой схеме с фреоном-22 в качестве рабочего тела была изготовлена в 1956 г. и испытана на Паратунском месторождении термальных вод на Камчатке. Оборудование для таких ГеоТЭС с разными рабочими телами изготавливалось рядом фирм в США, Японии, Италии, Австрии. В настоящее время промышленный выпуск энергомодулей мощностью 0,5…3 МВт с низкокипящими рабочими телами осуществляется фирмой «Ормат» (Израиль). Общая мощность ГеоТЭС, построенных во многих странах с этими энергомодулями, превышает 350 МВт. В нашей стране на Кировском заводе был спроектирован энергомодуль мощностью 1,5 МВт на озонобезопасном фреоне-42b. В настоящее время работы по созданию специальной турбины ведутся в ОАО «Наука».
В последние годы особое внимание проявляется к использованию водоаммиачной смеси в качестве рабочего тела. Этот интерес обусловлен изменением температуры в процессе парообразования смеси ― сначала при более низкой температуре выкипает, в основном, аммиак и по мере уменьшения его концентрации температура кипящей смеси растет. В результате удается сблизить кривые охлаждения геотермального рассола и нагрева и парообразования водоаммиачной смеси в I ,t -диаграмме, что приводит к снижению необратимых потерь эксергии при теплообмене и повышению КПДцикла ГеоТЭС. Кроме того, путем изменения концентрации аммиака в смеси можно эффективно использовать одну и ту же турбину на геотермальных месторождениях с температурами рассолов 80…200 °С.
Э н ерг омо д у ли ф ирм ы «О рмат » постав ляют с я п о це н е в средне м 100 0 д о лл . з а 1 к Вт .

Геотермальные ТЭС комбинированного цикла с паровой турбиной в верхнем цикле и низкокипящим рабочим телом в нижнем цикле.


Д ля боле е по лног о испо льзован ия т еплово г о п от е нциал а геотермально й пароводяно й смес и целе сообразно испо льзо ват ь комб ин ирова нну ю тепл ову ю схем у.

Из подъемной скважины 1 пароводяная смесь подается в сепаратор 2 , откуда пар направляется в противодавленческую паровую турбину 3 , после выхода из турбины пар поступает в конденсатор 4 ,являющийся парогенератором низкокипящего рабочего тела. Образующийся конденсат используется на станции. Отсепарированный горячий геотермальный рассол подается в пароперегреватель низкокипящего рабочего тела 5 , после чего возвращается в пласт по нагнетательной скважине 10 . Перегретый пар низкокипящего РТ подается на вход бинарной турбины 6 , после расширения в которой идет в рекуператор 7 , где охлаждается и идет в воздушный конденсатор 8 . Сконденсированное низкокипящее РТ питательным насосом 9 подается на предварительный подогрев в рекуператор 7 и затем в парогенератор 4 . Такая схема позволяет использовать тепло отсепарированного рассола для перегрева низкокипящего РТ, что приводит к увеличению КПД ГеоТЭС. Особенно эффективно применение такой схемы при низких температурах воздуха, так как благодаря низким температурам замерзания низкокипящих РТ (ниже -50 °С) можно осуществлять конденсацию при отрицательных температурах. Для условий Мутновского месторождения пароводяной смеси (среднегодовая температура воздуха ― 5 °С) выработка электроэнергии на комбинированной ГеоТЭС увеличивается на 20 % по сравнению с традиционным конденсационным циклом. Соответствующий патент получен совместно ОАО «Наука» и ОАО «ЭНИН им. Г.М. Кржижановского». ко

нденсатор ; 5 пароперегреватель ; 6 — бинарна я турби на; 7 — рекуператор ; 8 — воздушны й конденсато р; 9 — пита тельн ый насос ; 1 0 — нагнетательна я скважина.


Оборудование ГеоТЭС комбинированного цикла выпускается израильской фирмой «Ормат», оно установлено на ряде геотермальных станций на Филиппинах и Индонезии. В России по этой схеме планируется построить 4-й блок Верхне-Мутновской ГеоТЭС общей мощностью 6 МВт.

Васильев В.А, Тарнижевский Б.В., ОАО «ЭНИН»

Тенденции развития современного мира таковы, что с каждым годом возрастает потребность в дополнительных источниках электрической энергии. Причина этого вполне очевидна: уже начался постепенный процесс переориентирования многих технических отраслей, в которых на данный момент в качестве топлива используются ископаемые его виды, на электричество. Примеров много: электросталеплавильные печи, и пр. Именно это служит причиной, поясняющей активное строительство электростанций во всем мире.

Каждая страна заинтересована в наиболее эффективном решении. А выбирать сейчас есть из чего: геотермальные электростанции; атомные; работающие на мазуте, угле и газе; гидроэлектростанции; использующие энергию солнца и ветра. Все их можно условно разделить на два типа: зависящие от поставок топлива (подвоз транспортом) и другие, в основе которых лежат природные локальные источники электроэнергии. Вторые являются абсолютно безопасными для окружающей среды, что очень актуально в современном мире.

Среди таких экологичных решений наибольший интерес представляют геотермальные электростанции. У них лишь два существенных недостатка: относительно малые и возможность строительства только вблизи действующих Рассмотрим этот вид генерирующих станций более подробно.

Ни для кого не секрет, что в некоторых точках земного шара существуют природные источники воды и пара. Обычно это районы возле горных гряд и в местах, где толщина земной коры небольшая. Внутренняя температура Земли исчисляется тысячами градусов. В некоторых случаях в разлом коры попадает вода, нагревается теплом недр и вырывается вверх в виде перегретого пара или Геотермальные электростанции используют кинетическую силу таких источников. Очевидно, что если пар направить по трубам к турбине, то будет выполнена работа по ее вращению. Достаточно подключить классическую генерирующую машину и снимать с ее выводов электроэнергию.

Принцип работы действительно очень прост. Однако существует ряд особенностей, из-за которых подобные станции отличаются одна от другой.

Перед началом строительства георазведка определяет оптимальное место размещения будущих генерирующих мощностей. Условие одно - близость к внутреннему источнику тепла. Если существует развитая система гейзеров, то остается лишь откорректировать их конфигурацию должным образом (направить канал вертикально, увеличив скорость движения пара). В другом случае приходится с помощью буровых установок дополнительно углубляться в недра планеты: каждые 36 метров дают увеличение температуры на 1 градус.

Иногда пар (вода) содержит смесь растворенных газов, быстро разрушающих аппараты станции. В этом случае поток пара проходит промежуточную очистку. Первые геотермальные электростанции появились в 1904 году и все еще работают.

Существует два типа работы: с открытым и замкнутым циклом. При использовании первого пар, вращающий турбины, выбрасывается в атмосферу. Название второго говорит само за себя: пар закольцовывается. Обычно все станции имеют два подземных канала - для подачи носителя на турбины и закачки обратно в недра. В некоторых странах используется уникальное решение: закачиваются в недра, пополняя дебет водоносного слоя. Таким способом удается утилизировать воды и обеспечить дополнительное поступление пара на электростанцию. Кроме пара может использоваться и вода.

Иногда применяется непрямая (бинарная) схема. В ней создается контур из турбины и закольцованных каналов, содержащих жидкость с низкой (меньше, чем у воды). Внешняя горячая вода источника испаряет жидкость в контуре, давление паров которой и приводит турбину в движение. Фактически речь идет о разновидности большой тепловой трубки.

Стремительный рост энергопотребления, ограниченность невозобновляемых природных богатств, вынуждают задуматься об использовании альтернативных источников энергии. В этом отношении особого внимания заслуживает применение геотермальных ресурсов.

Геотермальные электростанции (ГеоЭС) – сооружения для получения электрической энергии за счет природного тепла Земли.

Геотермальная энергетика имеет более чем столетнюю историю. В июле 1904 года в итальянском городке Лардерелло был проведен первый эксперимент, позволивший получить электроэнергию из геотермального пара. А через несколько лет здесь же была запущена первая геотермальная электростанция, работающая до сих пор.

Перспективные территории

Для построения геотермальных электростанций идеальными считаются районы с геологической активностью, где естественное тепло находится на сравнительно небольшой глубине.

Сюда относятся области, изобилующие гейзерами, открытыми термальными источниками с водой, разогретой вулканами. Именно здесь геотермальная энергетика развивается наиболее активно.

Однако и в сейсмически неактивных районах имеются пласты земной коры, температура которых составляет более 100 °С.

На каждых 36 метрах глубины температурный показатель возрастает на 1 °С. В этом случае бурят скважину и закачивают туда воду.

На выходе получают кипяток и пар, которые можно использовать как для обогрева помещений, так и для производства электрической энергии.

Территорий, где можно таким образом получать энергию, много, поэтому геотермальные электростанции функционируют повсеместно.

Источники получения геотермальной энергии

Добыча естественного тепла может осуществляться из следующих источников.

Принципы работы геотермальных электростанций

Сегодня применяется три способа производства электричества с использованием геотермальных средств, зависящих от состояния среды (вода или пар) и температуры породы.

  1. Прямой (использование сухого пара). Пар напрямую воздействует на турбину, питающую генератор.
  2. Непрямой (применение водяного пара). Здесь используется гидротермальный раствор, который закачивается в испаритель. Полученное при снижении давления испарение приводит турбину в действие.
  3. Смешанный, или бинарный. В этом случае используется гидротермальная вода и вспомогательная жидкость с низкой точкой кипения, например фреон, который закипает под воздействием горячей воды. Образовавшийся при этом пар от фреона крутит турбину, потом конденсируется и снова возвращается в теплообменник для нагрева. Образуется замкнутая система (контур), практически исключающая вредные выбросы в атмосферу.
Первые геотермальные электростанции работали на сухом пару.

Непрямой способ на сегодняшний день считается самым распространенным. Здесь используются подземные воды температурой около 182 °С, которые закачиваются в генераторы, расположенные на поверхности.

Достоинства ГеоЭС

  • Запасы геотермальных ресурсов считаются возобновляемыми, практически неисчерпаемыми, но при одном условии : в нагнетательную скважину нельзя закачивать большое количество воды в короткий промежуток времени.
  • Для работы станции не требуется внешнее топливо.
  • Установка может работать автономно, на своем вырабатываемом электричестве. Внешний источник энергии необходим лишь для первого запуска насоса.
  • Станция не требует дополнительных вложений, за исключением расходов на техническое обслуживание и ремонтные работы.
  • Геотермальным электрическим станциям не нужны площади для санитарных зон.
  • В случае расположения станции на морском или океаническом берегу, возможно ее использование для естественного опреснения воды. Этот процесс может происходить непосредственно в режиме работы станции – при разогреве воды и охлаждении водяного испарения.

Недостатки геотермальных установок

  • Велики первоначальные вложения в разработку, проектирование и строительство геотермальных станций.
  • Зачастую проблемы возникают в выборе подходящего места для размещения электростанции и получении разрешения властей и местных жителей.
  • Через рабочую скважину возможны выбросы горючих и токсичных газов, минералов, которые содержатся в земной коре. Технологии на некоторых современных установках позволяют собирать эти выбросы и перерабатывать в топливо.
  • Бывает, что действующая электростанция останавливается. Это может произойти вследствие естественных процессов в породе либо при чрезмерной закачке воды в скважину.

Крупнейшие производители геотермальной энергии

В США и на Филиппинах построены самые крупные ГеоЭС. Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций.

Самым мощным считается комплекс «Гейзеры», расположенный в Калифорнии. Он состоит из 22 двух станций с суммарной мощностью 725 МВт, достаточной для обеспечения многомиллионного города.
  • Мощность филиппинской электростанции «Макилинг-Банахау» составляет около 500 МВт.
  • Еще одна филиппинская электростанция с названием «Тиви» имеет мощность 330 МВт.
  • «Долина Империал» в США – комплекс из десяти геотермальных электростанций с совокупной мощностью 327 МВт.
  • Хронология развития отечественной геотермальной энергетики

Российская геотермальная энергетика начала свое развитие с 1954 года, когда было принято решение о создании лаборатории по исследованию естественных тепловых ресурсов на Камчатке.

  1. 1966 год – запущена Паужетская геотермальная электростанция с традиционным циклом (сухой пар) и мощностью 5 МВт. Через 15 лет ее мощность была доработана до 11 МВт.
  2. В 1967 году начала функционировать Паратунская станция с бинарным циклом. Кстати, патент на уникальную технологию бинарного цикла, разработанный и запатентованный советскими учеными С. Кутателадзе и Л. Розенфельдом, был куплен многими странами.

Большие уровни добычи углеводородного сырья в 1970-е годы, критическая экономическая ситуация в 90-е годы остановили развитие геотермальной энергетики в России. Однако сейчас интерес к ней вновь появился по ряду причин:

  • Цены на нефть и газ на внутреннем рынке становятся близкими к мировым.
  • Запасы топлива стремительно истощаются.
  • Вновь открытые месторождения углеводородов на дальневосточном шельфе и побережье Арктики в настоящее время малорентабельны.

Вам нравятся большие, мощные машины? Прочитайте интересную статью про .

Если вам нужно оборудование для дробления материалов – прочтите эту .

Перспективы освоения геотермальных ресурсов в России

Наиболее перспективными областями Российской Федерации в части использования тепловой энергии для выработки электричества являются Курильские острова и Камчатка.

На Камчатке имеются такие потенциальные геотермальные ресурсы с вулканическими запасами парогидротерм и энергетических термальных вод, которые способны обеспечить потребность края на 100 лет. Многообещающим считается Мутновское месторождение, известные запасы которого могут предоставить до 300 МВт электричества. История освоения этой области началась с георазведки, оценки ресурсов, проектирования и строительства первых камчатских ГеоЭС (Паужетской и Паратунской), а также Верхне-Мутновской геотермальной станции мощностью 12 МВт и Мутновской, имеющей мощность 50 МВт.

На Курильских островах функционируют две электростанции, использующие геотермальную энергию – на острове Кунашир (2,6 МВт) и на острове Итуруп (6МВт).

В сравнении с энергетическими ресурсами отдельных филиппинских и американских ГеоЭС отечественные объекты производства альтернативной энергии проигрывают значительно: их суммарная мощность не превышает и 90 МВт. Но камчатские электростанции, к примеру, обеспечивают потребности региона в электричестве на 25 %, что в случае непредвиденных прекращений поставки топлива не позволит жителям полуострова остаться без электроэнергии.

В России имеются все возможности для разработки геотермальных ресурсов – как петротермальных, так и гидрогеотермальных. Однако используются они крайне мало, а перспективных областей более чем достаточно. Кроме Курил и Камчатки возможно практическое применение на Северном Кавказе, Западной Сибири, Приморье, Прибайкалье, Охотско-Чукотском вулканическом поясе.

Определение геотермальной энергии заложено в самом её названии – это энергия тепла земных недр. Слой магмы, расположенный под земной корой, представляет собой огненно-жидкий, чаще всего силикатный расплав. Согласно подсчетам, энергетический потенциал тепла на глубине 10 тысяч метров в 50 тысяч раз превышает энергию мировых запасов природного газа и нефти. Выходящая на поверхность земли магма называется лавой. Наибольшая "пропускная способность" Земли в извержении лавы наблюдается на границах тектонических плит и там, где земная кора достаточно тонка. Когда лава входит в соприкосновение с водными ресурсами планеты, начинается резкий нагрев воды, что в результате приводит к гейзерным извержениям, формированию горячих озёр и подводных течений. Словом, возникают природные явления, свойства которых можно использовать в качестве практически неиссякаемого источника энергии. Источники геотермальной энергии практически неисчерпаемы. Правда, распространены они не повсеместно, хотя и обнаружены в более чем 60 странах мира. Наибольшее количество действующих наземных вулканов расположено в зоне Тихоокеанского вулканического огненного кольца (328 из 540 известных). Геотермический градиент в скважине, с помощью которой добираются до подземной энергии, повышается на 1 о С каждые 36 метров. Получаемое таким образом тепло поступает на поверхность в виде горячего пара или воды, которые можно использовать напрямую для обогрева зданий или косвенно, для производства электроэнергии. На практике геотермальные источники в различных регионах планеты значительно отличаются друг от друга, из-за чего их приходится классифицировать по десяткам различных характеристик, таким как средняя температура, минерализация, газовый состав, кислотность и пр. В плоскости практического применения для выработки электрической энергии основной классификацией геотермальных источников можно считать деление на три основных типа:
  • Прямой - используется сухой пар;
  • Непрямой - используется водяной пар;
  • Смешанный (бинарный цикл).
В простейших геотермальных электростанциях прямого типа для производства электроэнергии используют пар, который поступает из скважины непосредственно в турбину генератора. Самая первая геотермальная электростанция в мире работала именно по такому принципу. Эксплуатация этой станции началась в итальянском городке Лардерелло (недалеко от Флоренции) ещё в 1911 году. Семью годами ранее, 4 июля 1904 года с помощью геотермального пара здесь был приведен в действие генератор, который смог зажечь четыре электрические лампочки, после чего и было принято решение о строительстве электростанции. Что примечательно, станция в Лардерелло функционирует и по сей день. Одна из самых крупных ныне действующих геотермальных электростанций в мире мощностью 1400 МВт расположена в районе "Гейзерс" в Северной Калифорнии (США), и она также использует сухой пар. Геотермальные электростанции с непрямым типом производства электроэнергии сегодня наиболее распространены. Для их работы используются горячие подземные воды, которые закачиваются при высоком давлении в генераторные установки, установленные на поверхности. В геотермальных электростанциях смешанного типа кроме подземной воды используется дополнительная жидкость (или газ), чья точка кипения ниже, чем у воды. Они пропускаются через теплообменник, где геотермальная вода выпаривает вторую жидкость, а получаемые пары приводят в действие турбины. Такая замкнутая система экологически чиста, поскольку вредные выбросы в атмосферу практически отсутствуют. Кроме того, бинарные станции функционируют при довольно низких температурах источников, по сравнению с другими типами геотермальных станций (100-190 °С). Такая особенность в будущем может сделать этот тип геотермальных электростанций самым популярным, поскольку в большей части геотермальных источников вода имеет температуру ниже 190 °С.

Использование геотермальных источников в мире

Первая геотермальная электростанция в СССР была возведена на Камчатке – это Паужетская ГеоТЭС, начавшая свою работу в 1967 году. Первоначально мощность станции составляла 5 МВт; впоследствии её удалось увеличить до 11 МВт. Потенциал гидротермальных месторождений на Камчатке огромен. Запасы тепла геотермальных вод здесь оцениваются в 5000 МВт. Использование в полной мере геотермального тепла могло бы решить энергетическую проблему Камчатской области, сделать ее независимой от завозного топлива. Самым изученным и наиболее перспективным является Мутновское геотермальное месторождение, расположенное в 90 километрах южнее города Петропавловск-Камчатский. Еще в 1986 году, проведенная Институтом вулканологии РАН оценка показала, что прогнозируемые ресурсы месторождения составляют по тепловому выносу - 312 МВт, а по объемному методу - 450 МВт. Опытно-промышленная Верхне-Мутновская ГеоТЭС мощностью 12 (3x4) МВт функционирует с 1999 года. Установленная мощность на 2004 год - 12 МВт. I очередь Мутновской ГеоТЭС мощностью 50 (2x25) МВт включена в сеть 10 апреля 2003 года; установленная мощность на 2007 год - 50 МВт, планируемая мощность станции - 80 МВт. Действующие геотермальные электростанции обеспечивают до 30% энергопотребления центрального Камчатского энергоузла. Приятно отметить, что тепломеханическое оборудование ГеоТЭС на Мутновском месторождении разработано, создано и поставлено отечественными заводами: турбины принадлежат ОАО "КТЗ", сепараторы - ОАО "ПМЗ", энергетическая арматура - ОАО "ЧЗЭМ" и т.д. Запасами тепла земли богаты Курильские острова. В частности, на острове Итуруп, на Океанском геотермальном месторождении, уже пробурены скважины и строится ГеоТЭС. На южном острове Кунашир имеются запасы геотермального тепла, и их уже используют для получения электроэнергии и теплоснабжения города Южно Курильск. На острове Парамушир, имеющего запасы геотермальной воды температурой от 70 до 95°С, строится ГеоТС мощностью 20 МВт. Существенные запасы геотермального тепла (на границе с Камчатской областью) имеются на Чукотке. Частично они открыты и используется для обогрева находящихся поблизости населенных пунктов. В России использование геотермальной энергии, кроме Камчатки, Курил, Приморья, Прибайкалья и Западно-Сибирского региона, возможно на Северном Кавказе. Здесь изучены геотермальные месторождения с температурой от 70 до 180°С, находящиеся на глубине от 300 до 5000 метров. В Дагестане только в 2000 году добыли свыше 6 млн м 3 геотермальной воды. Всего на Северном Кавказе примерно полмиллиона людей обеспечены геотермальным водоснабжением. На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия. Особенно ярким примером использования геотермальной энергии служит последнее государство. Остров Исландия появился на поверхности океана в результате вулканических извержений 17 миллионов лет назад, и теперь его жители пользуются своим привилегированным положением - примерно 90% исландских домов обогревается подземной энергией. Что касается выработки электроэнергии, здесь работают пять ГеоТЭС общей мощностью 420 МВт, использующих горячий пар с глубины от 600 до 1000 метров. Таким образом, с помощью геотермальных источников производится 26,5% всей электроэнергии Исландии.

Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

Энергия низкопотенциальная, но перспективная

Геотермальные источники можно поделить на низко-, средне- и высокотемпературные. Первые (с температурой до 150 °С) используются, по большей части, для теплоснабжения горячей водой - ее подводят по трубам к зданиям (жилым и производственным), плавательным бассейнам, теплицам и т.д. Вторые (с температурой свыше 150 °С), содержащие сухой либо влажный пар, годятся для приведения в движение турбин геотермальных электростанций (ГеоТЭС). Существенным минусом "горячих" геотермальных источников является их "избирательная" расположенность в местах тектонической нестабильности, о чем говорилось выше. Если брать Россию, то запасами высокопотенциальной геотермальной энергией можно пользоваться только на Камчатке, Курилах да в районе Кавказских минеральных вод. Но земная "котельная" располагает не только высокопотенциальной, но и низкопотенциальной энергией, источником которой выступает грунт поверхностных слоев земли (глубиной до 400 м) или подземные воды с относительно низкой температурой. Использовать низкопотенциальное тепло можно с помощью тепловых насосов. Тепловой режим грунта земляных поверхностных слоев создается под воздействием радиогенного тепла, идущего из недр земли, а также попадающей на поверхность солнечной радиации. Интенсивность падающей солнечной радиации может колебаться в зависимости от конкретных почвенно-климатических условий в пределах от нескольких десятков сантиметров до полутора метров. Низкопотенциальное тепло эффективно использовать для обогрева зданий, водоснабжения горячей водой, подогрева различных сооружений (например, полей открытых стадионов). В последнее десятилетие значительно выросло число систем, использующих подземные недра для снабжения зданий теплом и холодом. Больше всего таковых систем находится в США. Имеются они также в Австрии, Германии, Швеции, Швейцарии, Канаде. В нашей стране подобных систем насчитывается единицы. В европейских странах тепловые насосы, в основном, отапливают помещения. В США, где системы воздушного отопления совмещены с вентиляцией, воздух не только нагревается, но и охлаждается. Если говорить о России, пример использования низкопотенциального источника тепловой энергии находится в Москве, в микрорайоне Никулино-2. Здесь была построена теплонасосная система для горячего водоснабжения многоэтажного жилого дома. Данный проект реализовали в 1998-2002 годах Министерством обороны РФ совместно с правительством Москвы, Минпромнауки России, НП "АВОК" и ОАО "Инсолар-Инвест" в рамках "Долгосрочной программы энергосбережения в г. Москве". Выделяют два вида систем использования низкопотенциальной тепловой энергии земли: открытые системы и замкнутые системы. Первые используют грунтовые воды, подводимые непосредственно к тепловым насосам, вторые – грунтовый массив. Для открытых систем характерны парные скважины, с помощью которых грунтовые воды не только извлекаются, но затем и возвращаются обратно в водоносные слои. Открытые системы позволяют получить большое количество тепловой энергии с относительно низкими затратами. Однако грунт должен быть водопроницаем, а сами грунтовые воды - обладать пригодным для эксплуатации химическим составом, чтобы избежать коррозии и отложений на стенках труб. Самая большая в мире геотермальная теплонасосная система, использующая энергию грунтовых вод, размещается в американском городе Луисвилл. С ее помощью снабжается теплом и холодом гостинично-офисный комплекс. Мощность системы - примерно 10 МВт. Замкнутые системы делятся на вертикальные и горизонтальные. Вертикальные грунтовые теплообменники используют низкопотенциальную тепловую энергию грунтового массива ниже так называемой "нейтральной зоны" (10-20 метров от уровня земли). Такие системы не требуют участков большой площади, а также не зависят от интенсивности солнечной радиации, падающей на поверхность. Им подходят почти все виды геологических сред, кроме грунтов с низкой теплопроводностью, например, сухого песка или гравия. В вертикальных грунтовых теплообменниках теплоноситель циркулирует по трубам (чаще всего полипропиленовым или полиэтиленовым), уложенным в вертикальных скважинах глубиной от 50 до 200 метров. Обычно используется два типа вертикальных грунтовых теплообменников: U-образный и коаксиальный. Первый представляет собой две параллельные трубы, соединенные в нижней части. В одной скважине располагаются одна или две пары таких труб. Преимущество U-образного типа - сравнительно низкая стоимость изготовления. Второй тип теплообменника (называемый также концентрическим) представляет собой две трубы разного диаметра, одна из которых размещается внутри другой. Системы с вертикальными грунтовыми теплообменниками пригодны для снабжения зданий как теплом, так и холодом. Небольшому строению хватит одного теплообменника, а вот для больших зданий может понадобиться несколько скважин с вертикальными теплообменниками. Как пример последнему служит система тепло- и холодоснабжения американского колледжа "Richard Stockton College", в которой используется рекордное количество скважин – 400 (глубиной 130 метров). В Европе самое большее число скважин (154 скважины глубиной 70 метров) пробурено для системы тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением. Горизонтальные грунтовые теплообменники создаются обычно неподалеку от здания, на небольшой глубине, но обязательно ниже уровня промерзания грунта в зимний период. В Европе подобные теплообменники представляют собой плотно соединенные (последовательно или параллельно) трубы. Чтобы сэкономить площадь, созданы специальные типы теплообменников, например, в виде спирали. В качестве источника низкопотенциальной тепловой энергии перспективно использовать воды из туннелей и шахт, поскольку температура воды в них имеет постоянную температуру круглый год и легко доступна. Использование подземного тепла, как высокопотенциального, так и низкопотенциального, считается крайне перспективным. Особенно это касается обеспечения зданий теплым и охлажденным воздухом с помощью низкопотенциального тепла. По прогнозам Мирового Энергетического комитета (МИРЭК), к 2020 году развитые страны мира станут достаточно активно осуществлять теплоснабжение теплонасосными системами. И здесь подойдут не только "разгоряченные" земные недра, но также воздух и вода морей и океанов. Например, в Швеции, где близ Стокгольма размещена станция на шести баржах мощностью 320 МВт, используют воду Балтийского моря с температурой +4 °С. В Российской Федерации огромные запасы природного газа, нефти, угля и леса позволяют (до поры до времени) не слишком задумываться об альтернативных источниках энергии. Однако работы по освоению геотермальных источников ведутся на ее территории не первый десяток лет, что свидетельствует о понимании важности вопроса. Ведь речь идет о неисчерпаемых источниках тепла и электричества, которые, рано или поздно, станут важными, и, возможно, основными поставщиками энергии для всего человечества, а не только для отдельно взятых стран.
 


Читайте:



Курсовая работа моделирование и анализ информационной системы строительной организации ооо "м

Курсовая работа моделирование и анализ информационной системы строительной организации ооо

Для проведения количественного анализа диаграмм перечислим показатели модели: Количество блоков на диаграмме – N ; Уровень декомпозиции диаграммы...

Срок ремонта по гарантии

Срок ремонта по гарантии

Поломка нового телефона - случай неприятный, но с данной техникой не редкий. Возникает актуальный вопрос, что делать в такой ситуации. Особенно...

Статистический контроль процессов

Статистический контроль процессов

Статистический контроль качества (понятие из японского стандарта) – это применение статистических принципов, методов и приемов на всех стадиях...

Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

Вниз по волшебной реке Успенский вниз по волшебной реке краткое содержание

Там на неведомых дорожках. Если вы не так уж боитесь Кащея,Или Бармалея и Бабу-Ягу,Приходите в гости к нам поскорее,Там, где зеленый дуб на...

feed-image RSS